Skip to main content

Advertisement

Log in

Molecular characterization of a stress-response bZIP transcription factor in banana

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Increasing evidence has demonstrated that basic leucine zipper (bZIP) transcription factors (TFs) are functional and involved in plant stress response, but few bZIP TFs have thus far been investigated in economically important fruit crops, such as bananas. In our present work, a novel 43.4 kDa bZIP transcription factor, MabZIP3, with a conserved bZIP domain, and a theoretical isoelectric point of 9.96 was isolated and characterized from banana fruit. Phylogenetic analysis showed that MabZIP3 belonged to the AREB subfamily of the bZIP family and was most closely related to BnABF2 and PsABF2. Transient expression analysis of the MabZIP3–GFP fusion protein in tobacco BY2 protoplasts revealed that the MabZIP3 protein is localized in the nucleus. Real-time PCR and promoter analysis of MabZIP3 indicated that it was responsive to methyl jasmonate, abscisic acid, chilling stress and pathogen Colletotrichum musae infection. More importantly, to further understand the regulatory network of MabZIP3 in response to stress, proteins physically interacting with MabZIP3 were identified by screening a cDNA expression library of banana fruit using the yeast two-hybrid system. Several interacting proteins related to stress responses were obtained, including a Saposin-Bdomain-containing protein, MaSAP, and their interaction was further confirmed by bimolecular fluorescence complementation assay (BiFC). Taken together, our results suggest that MabZIP3 is a stress-responsive transcription factor, which might be functionally linked to stress related proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

BiFC:

Bimolecular fluorescence complementation

bZIP:

Basic leucine zipper

CAC:

Clathrin adaptor complexes medium

GFP:

Green fluorescent protein

H2O2 :

Hydrogen peroxide

MeJA:

Methyl jasmonate

NLS:

Nuclear localization signal

PEG:

Polyethylene glycol

RT-qPCR:

Reverse transcription quantitative real-time PCR

TF:

Transcription factor

Y2H:

Yeast two-hybrid

YFP:

Yellow fluorescent protein

References

  • Abel S, Theologis A (1994) Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J 5:421–427

    Article  PubMed  CAS  Google Scholar 

  • Astorga AG, Estrella HL (1998) Evolution of light-regulated plant promoters. Annu Rev Plant Physiol Plant Mol Biol 49:525–555

    Article  Google Scholar 

  • Chen JY, He LH, Jiang YM, Wang Y, Joyce DC, Ji ZL, Lu WJ (2008) Role of phenylalanine ammonialyase in heat pretreatment-induced chilling tolerance in banana fruit. Physiol Plant 132:318–328

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Zhong HY, Kuang JF, Li JG, Lu WJ, Chen JY (2011) Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. Planta 234:377–390

    Article  PubMed  CAS  Google Scholar 

  • Choi H, Hong J, Ha J, Kang J, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    Article  PubMed  CAS  Google Scholar 

  • Classs S, Michodl B (1998) The regulation of transcription factor activity in plants. Trends Plant Sci 3:378–383

    Article  Google Scholar 

  • Daraselia ND, Tarchevskaya S, Narita JO (1996) The promoter for tomato 3- hydroxyl-3-methylglutaryl coenzyme A reductase gene 2 has unusual regulatory elements that direct high-level expression. Plant Physiol 112:727–733

    Article  PubMed  CAS  Google Scholar 

  • Després C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert PR (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15:2181–2191

    Article  PubMed  Google Scholar 

  • Dunn MA, White AJ, Vural S, Hughes MA (1998) Identification of promoter elements in a low temperature responsive gene (blt4.9) from barley (Hordeum vulgare L.). Plant Mol Biol 38:551–564

    Article  PubMed  CAS  Google Scholar 

  • Figueroa-Yanez L, Cano-Sosa J, Castano E, Arroyo-Herrera AL, Caamal-Velazquez JH, Sanchez-Teyer F, Lopez-Gomez R, De Los Santos-Briones C, Rodriguez-Zapata L (2012) Phylogenetic relationships and expression in response to low temperature of a catalase gene in banana (Musa acuminata cv. “Grand Nain”) fruit. Plant Cell Tiss Org Cult 109:429–438

    Article  CAS  Google Scholar 

  • Fitzgerald HA, Chern MS, Navarre R, Ronald PC (2004) Over-expression of AtNPR1 in rice leads to a BTH- and environment-induced lesion-mimic/cell death phenotype. Mol Plant Microbe Interact 17:140–151

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald HA, Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525

    Google Scholar 

  • Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA 103:1988–1993

    Article  PubMed  CAS  Google Scholar 

  • Gao JJ, Shen XF, Zhang Z, Peng RH, Xiong AS, Xu J, Zhu B, Zheng JL, Yao QH (2011) The myb transcription factor MdMYB6 suppresses anthocyanin biosynthesis in transgenic Arabidopsis. Plant Cell Tiss Org Cult 106:235–242

    Article  CAS  Google Scholar 

  • Garcia MNM, Giammaria V, Grandellis C, Tellez-Inon MT, Ulloa RM, Capiati DA (2012) Characterization of StABF1, a stress-responsive bZIP transcription factor from Solanum tuberosum L. that is phosphorylated by StCDPK2 in vitro. Planta 235:761–778

    Article  Google Scholar 

  • Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34

    Article  PubMed  CAS  Google Scholar 

  • Guevara MG, Oliva CR, Huarte M, Daleo GR (2002) An aspartic protease with antimicrobial activity is induced after infection and wounding in intercellular fluids of potato tubers. Eur J Plant Pathol 108:131–137

    Article  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genomeera: past, present and future. Plant J 61:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, Lee Y, Cho JI, Ahn CH, Lee SK, Jeon JS, Kang H, Lee CH, An G, Park PB (2010) The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol 72:557–566

    Article  Google Scholar 

  • Hsieh TH, Li CW, Su RC, Cheng CP, Sanjaya, Tsai YC, Chan MT (2010) A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta 231:1459–1473

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro S, Tanaka M, Kojimoto A, Kato M, Iwabuchi M, Nakamura K (1993) A nuclear factor that binds to a dyad-symmetric sequence with a CGTCA motif in the 5′-upstream region of the sweet potato beta-amylase gene. Plant Cell Physiol 34:567–576

    PubMed  CAS  Google Scholar 

  • Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  PubMed  CAS  Google Scholar 

  • James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436

    PubMed  CAS  Google Scholar 

  • Joshi CP (1987) An inspection of the domain between putative TATA box and translational start site in 79 plant genes. Nucleic Acids Res 15:6643–6653

    Article  PubMed  CAS  Google Scholar 

  • Kang JY, Choi HI, Im MY, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Kang JY, Cho DI, Park JH, Kim SY (2004) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J 40:75–87

    Article  PubMed  CAS  Google Scholar 

  • Kirchler T, Briesemeister S, Singer M, Schutze K, Keinath M, Kohlbacher O, Vicente-Carbajosa J, Teige M, Harter K, Chaban C (2010) The role of phosphorylatable serine residues in the DNA-binding domain of Arabidopsis bZIP transcriptionfactors. Eur J Cell Biol 89:175–183

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi F, Maeta E, Terashima A, Takumi S (2008) Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings. Physiol Plant 134:74–86

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Kim JY, Kim SH, Kim SJ, Lee K, Hana SK, Choi HS, Jeong DH, Anb G, Kim SR (2004) Trapping and characterization of cold-responsive genes from T-DNA tagging lines in rice. Plant Sci 166:69–79

    Article  CAS  Google Scholar 

  • Lee SC, Choi HW, Hwang IS, Choi DS, Hwang BK (2006) Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta 224:1209–1225

    Article  PubMed  CAS  Google Scholar 

  • Liao Y, Zhang JS, Chen SY, Zhang WK (2008) Role of soybean GmbZIP132 under abscisic acid and salt stresses. J Integr Plant Biol 50:221–230

    Article  PubMed  CAS  Google Scholar 

  • Liu CT, Wu YB, Wang XP (2012) bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta 235:1157–1169

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lu G, Gao C, Zheng X, Han B (2009) Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229:605–615

    Article  PubMed  CAS  Google Scholar 

  • Meng XB, Zhao WS, Lin RM (2005) Identification of a novel rice bZIP type transcription factor gene, OsbZIP1, involved in response to infection of Magnaporthe grisea. Plant Mol Biol 23:301–302

    Article  Google Scholar 

  • Munoz FF, Mendieta JR, Pagano MR, Paggi RA, Daleo GR, Guevara MG (2010) The swaposin-like domain of potato aspartic protease (StAsp-PSI) exerts antimicrobial activity on plant and human pathogens. Peptides 31:777–785

    Article  PubMed  CAS  Google Scholar 

  • Nieva C, Busk PK, Dominguez-Puigjaner E, Lumbreras V, Testillano PS, Risueno MC, Pages M (2005) Isolation and functional characterisation of two new bZIP maize regulators of the ABA responsive gene rab28. Plant Mol Biol 58:899–914

    Article  PubMed  CAS  Google Scholar 

  • Niggeweg R, Thurow C, Kegler C, Gatz C (2000) Tobacco transcription factor TGA2.2 is the main component of as-1-binding factor ASF-1 and is involved in salicylic acid- and auxin inducible expression of as-1-containing target promoters. J Biol Chem 275:19897–19905

    Article  PubMed  CAS  Google Scholar 

  • Nijhawan A, Jain M, Tyagi AK, Khurana JP (2008) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol 146:333–350

    Article  PubMed  CAS  Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604

    Article  PubMed  CAS  Google Scholar 

  • Ono E, Wong HL, Kawasaki T, Hasegawa M, Kodama O, Shimamoto K (2001) Essential role of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci USA 98:759–764

    Article  PubMed  CAS  Google Scholar 

  • Parry TJ, Theisen JW, Hsu JY (2010) The TCT motif, a key component of an RNA polymerase II transcription system for the translational machinery. Genes Dev 24:2013–2018

    Article  PubMed  CAS  Google Scholar 

  • Pontier D, Miao ZH, Eric L (2001) Trans-dominant suppression of plant TGA factors reveals their negative and positive roles in plant defense responses. Plant J 27:529–538

    Article  PubMed  CAS  Google Scholar 

  • Sazegari S, Niazi A (2012) Isolation and molecular characterization of wheat (Triticum aestivum) dehydration responsive element binding factor (DREB) isoforms. Aust J Corp Sci 6:1037–1044

    CAS  Google Scholar 

  • Schlögl PS, Nogueira FT, Drummond R, Felix JM, RosaJr VD, Vicentini R, Leite A, Ulian EC, Menossi M (2008) Identification of new ABA- and MEJA-activated sugarcane bZIP genes by data mining in the SUCEST database. Plant Cell Rep 27:335–345

    Article  PubMed  Google Scholar 

  • Seong ES, Kwon SS, Ghimire BK, Yu CY, Cho DH, Lim JD, Kim KS, Heo K, Lim ES, Chung IM, Kim MJ, Lee YS (2008) LebZIP2 induced by salt and drought stress and transient overexpression by Agrobacterium. BMB Rep 6:693–698

    Article  Google Scholar 

  • Shekhawat UKS, Ganapathi TR, Srinivas L (2011a) Cloning and characterization of a novel stress-responsive WRKY transcription factor gene (MusaWRKY71) from Musa spp. cv. Karibale Monthan (ABB group) using transformed banana cells. Mol Biol Rep 38:4023–4035

    Article  PubMed  CAS  Google Scholar 

  • Shekhawat UKS, Srinivas L, Ganapathi TR (2011b) MusaDHN-1, a novel multiple stress-inducible SK3-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. Planta 234:915–932

    Article  PubMed  CAS  Google Scholar 

  • Shimizu H, Sato K, Berberich T, Miyazaki A, Ozaki R, Imai R, Kusano T (2005) LIP19, a basic region leucine zipper protein, is a fos-like molecular switch in the cold signaling of rice plants. Plant Cell Physiol 46:1623–1634

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    PubMed  CAS  Google Scholar 

  • Sreedharan S, Shekhawat UKS, Ganapathi TR (2012) MusaSAP1, a A20/AN1 zinc finger gene from banana functions as a positive regulator in different stress responses. Plant Mol Biol 80:503–517

    Article  PubMed  CAS  Google Scholar 

  • Strathmann A, Kuhlmann M, Heinekamp T, Droge-Laser W (2001) BZI-1 specifically heterodimerises with the tobacco bZIP transcription factors BZI-2, BZI-3/TBZF and BZI-4, and is functionally involved in flower development. Plant J 28:397–408

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Ketterling MG, Li QB, McCarty DR (2003) Viviparous1 alters global gene expression patterns through regulation of abscisic acid signaling. Plant Physiol 132:1664–1677

    Article  PubMed  CAS  Google Scholar 

  • Tak H, Mhatre M (2012) Cloning and molecular characterization of a putative bZIP transcription factor VvbZIP23 from Vitis vinifera. Protoplasma. doi:10.1007/s00709-012-0417-3

  • Thurow C, Schiermeyer A, Krawczyk S, Butterbrodt T, Nickolov K, Gatz C (2005) Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development. Plant J 44:100–113

    Article  PubMed  CAS  Google Scholar 

  • Ulm R, Baumann A, Oravecz A, Mate Z, Adam E, Oakeley EJ, Schafer E, Nagy F (2004) Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proc Natl Acad Sci USA 101:1397–1402

    Article  PubMed  CAS  Google Scholar 

  • Vanhove AC, Vermaelen W, Panis B, Swennen R, Carpentier SC (2012) Screening the banana biodiversity for drought tolerance: can an in vitro growth model and proteomics be used as a tool to discover tolerant varieties and understand homeostasis. Front Plant Sci 3:176

    Article  PubMed  Google Scholar 

  • Wan CY, Wilkins TA (1994) Amodified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem 223:7–12

    Article  PubMed  CAS  Google Scholar 

  • Wan CY, Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, Näke C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    Google Scholar 

  • Wang B, Zheng J, Liu YG, Wang JH, Wang GY (2012) Cloning and characterization of the stress-induced bZIP gene ZmbZIP60 from maize. Mol Biol Rep 39:6319–6327

    Article  PubMed  CAS  Google Scholar 

  • Watkins NJ, Gottschalk A, Neubauer G (1998) Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. RNA 4:1549–1568

    Article  PubMed  CAS  Google Scholar 

  • Weltmeier F, Ehlert A, Mayer CS, Dietrich K, Wang X, Schutze K, Alonso R, Harter K, Vicente-Carbajosa J, Droge-Laser W (2006) Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors. EMBO J 25:3133–3143

    Article  PubMed  CAS  Google Scholar 

  • William L, McKendree J, Robert JF (1992) Functional elements of the Arabidopsis Adh promoter include the G-box. Plant Mol Biol 19:859–862

    Article  Google Scholar 

  • Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148:1938–1952

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  PubMed  CAS  Google Scholar 

  • Yang O, Popova OV, Suthoff U, Luking I, Dietz KJ, Golldack D (2009) The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene 436:45–55

    Article  PubMed  CAS  Google Scholar 

  • Ying S, Zhang DF, Fu J, Shi YS, Song YC, Wang TY, Li Y (2012) Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis. Planta 235:253–266

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Zhang G, Xia N, Wang XJ, Huang LL, Kang ZS (2009) Cloning and characterization of a bZIP transcription factor gene in wheat and its expression in response to stripe rust pathogen infection and abiotic stresses. Physiol Mol Plant Pathol 73:88–94

    Article  Google Scholar 

  • Zhou C, Guo JS, Feng ZH, Cui XH, Zhu J (2012) Molecular characterization of a novel AP2 transcription factor ThWIND1-L from Thellungiella halophila. Plant Cell Tiss Org Cult 110:423–433

    Article  CAS  Google Scholar 

  • Zhu J, Alvarez S, Marsh EL, LeNoble ME, Cho IJ, Sivaguru M, Chen S, Nguyen HT, Wu Y, Schachtman DP, Sharp RE (2007) Cell wall proteome in the maize primary root elongation aone. II. Region-specific changes in water soluble and lightly lonically bound proteins under water deficit. Plant Physiol 145:1533–1544

    Article  PubMed  CAS  Google Scholar 

  • Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66:675–683

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Yuhai Cui and Dr. Vi Nguyen (Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre) for their critical revising of the manuscript and suggestions. We are also grateful to Prof. Jörg Kudla (Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster) and Prof. Seiichiro Hasezawa (Department of Integrated Biosciences, The University of Tokyo) for the generous gift of BiFC vectors and tobacco BY2 suspension cells, respectively. This work was supported in part by the National Key Technology R&D Program of China (Grant No. 2011BAD24B02-4), the China Agriculture Research System (Grant No. CARS-32-02A), and Guangdong Modern Agricultural Industry Technology System (Grant No. LNSG2011-12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-ye Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, S., Shan, W., Kuang, Jf. et al. Molecular characterization of a stress-response bZIP transcription factor in banana. Plant Cell Tiss Organ Cult 113, 173–187 (2013). https://doi.org/10.1007/s11240-012-0258-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0258-y

Keywords

Navigation