Skip to main content

Advertisement

Log in

Characterization of potential ABA receptors in Vitis vinifera

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Molecular control mechanisms for abiotic stress tolerance are based on the activation and regulation of specific stress-related genes. The phytohormone abscisic acid (ABA) is a key endogenous messenger in a plant’s response to such stresses. A novel ABA binding mechanism which plays a key role in plant cell signaling cascades has recently been uncovered. In the absence of ABA, a type 2C protein phosphatase (PP2C) interacts and inhibits the kinase SnRK2. Binding of ABA to the PYR/PYLs receptors enables interaction between the ABA receptor and the PP2C protein, and abrogates the SnRK2 inactivation. The active SnRK2 is then free to activate the ABA-responsive element Binding Factors which target ABA-dependent gene expression. We used the grape as a model to study the ABA perception mechanism in fruit trees. The grape ABA signaling cascade consists of at least seven ABA receptors and six PP2Cs. We used a yeast two-hybrid system to examine physical interaction in vitro between the grape ABA receptors and their interacting partners, and found that twenty-two receptor-PP2C interactions can occur. Moreover, quantifying these affinities by the use of the LacZ reporter enables us to show that VvPP2C4 and VvPP2C9 are the major binding partners of the ABA receptor. We also tested in vivo the root and leaf gene expression of the various ABA receptors and PP2Cs in the presence of exogenic ABA and under different abiotic stresses such as high salt concentration, cold and drought, and found that many of these genes are regulated by such abiotic environmental factors. Our results indicate organ specificity in the ABA receptor genes and stress specificity in the VvPP2Cs. We suggest that VvPP2C4 is the major PP2C involved in ABA perception in leaves and roots, and VvRCAR6 and VvRCAR5 respectively, are the major receptors involved in ABA perception in these organs. Identification, characterization and manipulation of the central players in the ABA signaling cascades in fruit trees is likely to prove essential for improving their performance in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Castellarin SD, Gambetta GA, Wada H, Shackel KA, Matthews MA (2011) Fruit ripening in Vitis vinifera: spatiotemporal relationships among turgor, sugar accumulation, and anthocyanin biosynthesis. J Exp Bot 62:4345–4354

    Article  PubMed  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Chaves MM, Zarrouk O, Francisco R, Costa JM, Santos T, Regalado AP, Rodrigues ML, Lopes CM (2010) Grapevine under deficit irrigation: hints from physiological and molecular data. Ann Bot 105:661–676

    Article  PubMed  CAS  Google Scholar 

  • Christmann A, Hoffmann T, Teplova I, Grill E, Muller A (2005) Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis. Plant Physiol 137:209–219

    Article  PubMed  CAS  Google Scholar 

  • Christmann A, Weiler EW, Steudle E, Grill E (2007) A hydraulic signal in root-to-shoot signalling of water shortage. Plant J 52:167–174

    Article  PubMed  CAS  Google Scholar 

  • Coombe BG, Hale CR (1973) The hormone content of ripening grape berries and the effects of growth substance treatments. Plant Physiol 51:629–634

    Article  PubMed  CAS  Google Scholar 

  • Deluc L, Quilici D, Decendit A, Grimplet J, Wheatley M, Schlauch K, Merillon J-M, Cushman J, Cramer G (2009) Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics 10:212

    Article  PubMed  Google Scholar 

  • Emrich SJ, Li L, Wen T-J, Yandeau-Nelson MD, Fu Y, Guo L, Chou H–H, Aluru S, Ashlock DA, Schnable PS (2007) Nearly identical paralogs: implications for maize (Zea mays L.) genome evolution. Genetics 175:429–439

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park S-Y, Cutler SR, Sheen J, Rodriguez PL, Zhu J-K (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462:660–664

    Article  PubMed  CAS  Google Scholar 

  • Gambetta GA, Matthews MA, Shaghasi TH, McElrone AJ, Castellarin SD (2010) Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape. Planta 232:219–234

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hirayama T, Umezawa T (2010) The PP2C-SnRK2 complex: the central regulator of an abscisic acid signaling pathway. Plant Signal Behav 5:160–163

    Article  PubMed  CAS  Google Scholar 

  • Holbrook NM, Shashidhar VR, James RA, Munns R (2002) Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. J Exp Bot 53:1503–1514

    Article  PubMed  CAS  Google Scholar 

  • Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI (2010) Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev 24:1695–1708

    Article  PubMed  CAS  Google Scholar 

  • Israelsson M, Siegel RS, Young J, Hashimoto M, Iba K, Schroeder JI (2006) Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis. Curr Opin Plant Biol 9:654–663

    Article  PubMed  CAS  Google Scholar 

  • Iyer LM, Koonin EV, Aravind L (2001) Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily. Proteins Struct Funct Bioinform 43:134–144

    Article  CAS  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  PubMed  CAS  Google Scholar 

  • Jeong ST, Goto-Yamamoto N, Kobayashi S, Esaka M (2004) Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci 167:247–252

    Article  CAS  Google Scholar 

  • Klingler JP, Batelli G, Zhu JK (2010) ABA receptors: the START of a new paradigm in phytohormone signalling. J Exp Bot 61:3199–3210

    Article  PubMed  CAS  Google Scholar 

  • Koyama K, Sadamatsu K, Goto-Yamamoto N (2010) Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Funct Integr Genomics 10:367–381

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Yue Y, Li B, Nie Y, Li W, Wu WH, Ma L (2007) A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315:1712–1716

    Article  PubMed  CAS  Google Scholar 

  • Lund S, Peng F, Nayar T, Reid K, Schlosser J (2008) Gene expression analyses in individual grape (Vitis vinifera L.) berries during ripening initiation reveal that pigmentation intensity is a valid indicator of developmental staging within the cluster. Plant Mol Biol 68:301–315

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068

    PubMed  CAS  Google Scholar 

  • Maggio A, Zhu JK, Hasegawa PM, Bressan RA (2006) Osmogenetics: Aristotle to Arabidopsis. Plant Cell 18:1542–1557

    Article  PubMed  CAS  Google Scholar 

  • Melcher K, Ng LM, Zhou XE, Soon FF, Xu Y, Suino-Powell KM, Park SY, Weiner JJ, Fujii H, Chinnusamy V, Kovach A, Li J, Wang YH, Li JY, Peterson FC, Jensen DR, Yong EL, Volkman BF, Cutler SR, Zhu JK, Xu HE (2009) A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature 462:602–608

    Google Scholar 

  • Miyazono K, Miyakawa T, Sawano Y, Kubota K, Kang HJ, Asano A, Miyauchi Y, Takahashi M, Zhi YH, Fujita Y, Yoshida T, Kodaira KS, Yamaguchi-Shinozaki K, Tanokura M (2009) Structural basis of abscisic acid signalling. Nature 462:609–614

    Google Scholar 

  • Muschietti J, McCormick S (2010) Abscisic acid (ABA) receptors: light at the end of the tunnel. F1000 Biol Rep 2:15

    Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  PubMed  CAS  Google Scholar 

  • Neumann PM (2008) Coping mechanisms for crop plants in drought-prone environments. Ann Bot (Lond) 101:901–907

    Article  CAS  Google Scholar 

  • Nishimura N, Hitomi K, Arvai AS, Rambo RP, Hitomi C, Cutler SR, Schroeder JI, Getzoff ED (2009) Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326:1373–1379

    Article  PubMed  CAS  Google Scholar 

  • Owen SJ, Lafond MD, Bowen P, Bogdanoff C, Usher K, Abrams SR (2009) Profiles of abscisic acid and its catabolites in developing merlot grape (Vitis vinifera) berries. Am J Enol Vitic 60:277–284

    CAS  Google Scholar 

  • Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-Type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:136–148

    Article  PubMed  CAS  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    PubMed  CAS  Google Scholar 

  • Pou A, Flexas J, Alsina MD, Bota J, Carambula C, de Herralde F, Galmes J, Lovisolo C, Jimenez M, Ribas-Carbo M, Rusjan D, Secchi F, Tomas M, Zsofi Z, Medrano H (2008) Adjustments of water use efficiency by stomatal regulation during drought and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri × V. rupestris). Physiol Plant 134:313–323

    Article  PubMed  CAS  Google Scholar 

  • Qin X, Zeevaart JAD (1999) The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci 96:15354–15361

    Article  PubMed  CAS  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401

    Article  PubMed  CAS  Google Scholar 

  • Razem FA, El-Kereamy A, Abrams SR, Hill RD (2006) The RNA-binding protein FCA is an abscisic acid receptor. Nature 439:290–294

    Article  PubMed  CAS  Google Scholar 

  • Risk JM, Macknight RC, Day CL (2008) FCA does not bind abscisic acid. Nature 456:E5–E6

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  • Rubio S, Rodrigues A, Saez A, Dizon MB, Galle A, Kim T-H, Santiago J, Flexas J, Schroeder JI, Rodriguez PL (2009) Triple loss of function of protein phosphatases Type 2C leads to partial constitutive response to endogenous abscisic acid. Plant Physiol 150:1345–1355

    Article  PubMed  CAS  Google Scholar 

  • Santiago J, Dupeux F, Round A, Antoni R, Park SY, Jamin M, Cutler SR, Rodriguez PL, Marquez JA (2009a) The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462:665–668

  • Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park S-Y, Márquez JA, Cutler SR, Rodriguez PL (2009b) Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J 60:575–588

    Article  PubMed  CAS  Google Scholar 

  • Sauter A, Davies WJ, Hartung W (2001) The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot. J Exp Bot 52:1991–1997

    Article  PubMed  CAS  Google Scholar 

  • Schweighofer A, Hirt H, Meskiene I (2004) Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci 9:236–243

    Article  PubMed  CAS  Google Scholar 

  • Shen YY, Wang XF, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY, Fan RC, Xu YH, Zhang DP (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443:823–826

    Article  PubMed  CAS  Google Scholar 

  • Szostkiewicz I, Richter K, Kepka M, Demmel S, Ma Y, Korte A, Assaad FF, Christmann A, Grill E (2010) Closely related receptor complexes differ in their ABA selectivity and sensitivity. Plant J 61:25–35

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thompson AJ, Mulholland BJ, Jackson AC, McKee JM, Hilton HW, Symonds RC, Sonneveld T, Burbidge A, Stevenson P, Taylor IB (2007) Regulation and manipulation of ABA biosynthesis in roots. Plant Cell Environ 30:67–78

    Article  PubMed  CAS  Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51:1821–1839

    Article  PubMed  CAS  Google Scholar 

  • Wang XM, Wang Z, Dong J, Wang MZ, Gao HW (2009) Cloning of a 9-cis-epoxycarotenoid dioxygenase gene and the responses of Caragana korshinskii to a variety of abiotic stresses. Genes Genet Syst 84:397–405

    Article  PubMed  CAS  Google Scholar 

  • Wheeler S, Loveys B, Ford C, Davies C (2009) The relationship between the expression of abscisic acid biosynthesis genes, accumulation of abscisic acid and the promotion of Vitis vinifera L. berry ripening by abscisic acid. Aust J Grape Wine Res 15:195–204

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  PubMed  CAS  Google Scholar 

  • Yamane T, Jeong ST, Goto-Yamamoto N, Koshita Y, Kobayashi S (2006) Effects of temperature on anthocyanin biosynthesis in grape berry skins. Am J Enol Vitic 57:54–59

    CAS  Google Scholar 

  • Yin P, Fan H, Hao Q, Yuan XQ, Wu D, Pang YX, Yan CY, Li WQ, Wang JW, Yan N (2009) Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat Struct Mol Biol 16:U1230–U1242

    Article  Google Scholar 

  • Zhang J, Davies W (1989) Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. Plant Cell Environ 12:73–81

    Article  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Israeli Ministry of Agriculture and Rural Development Grant (No. 203080710). We thank Yehuda Ben-Ari for valuable assistance with writing and editing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giora Ben-Ari.

Additional information

Communicated by R. Rose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 796 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boneh, U., Biton, I., Zheng, C. et al. Characterization of potential ABA receptors in Vitis vinifera . Plant Cell Rep 31, 311–321 (2012). https://doi.org/10.1007/s00299-011-1166-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1166-z

Keywords

Navigation