Skip to main content
Log in

Patterns of Gene Duplication and Their Contribution to Expansion of Gene Families in Grapevine

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Grapevine is an important fruit crop that has undergone a long history of evolution. Analysis of the whole genome sequence of grapevine has revealed presence of an early palaeo-hexaploid along with three complements. Thus, gene duplication and genome expansion are common in this genome. In this study, we identified 17,922 duplicated genes in the whole grapevine genome. Among these, 2,039; 628; 1,428; 722; and 2,942 were identified respectively as produced by genome-wide, tandem, proximal, retrotransposed, and DNA-based transposed duplications. Analyses of the evolutionary patterns for different types of duplication using non-synonymous and synonymous substitution rates uncovered a series of underlying rules. Thereafter, all the grapevine genes were classified into families, and the contributions of different types of duplication to the expansion of large families were revealed. No duplication type was solely responsible for the formation of any large gene family, but some families showed enrichment of a special type of duplication. On the basis of this study, we believe that uncovering the underlying rules for gene duplications, expansions of gene families, and their evolutionary styles will contribute significantly to a comprehensive understanding of the features of the grapevine genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Afoufa-Bastien D, Medici A, Jeauffre J, Coutos-Thevenot P, Lemoine R, Atanassova R, Laloi M (2010) The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling. BMC Plant Biol 10:245

    Article  PubMed  Google Scholar 

  • Albalat R, Marfany G, Gonzalez-Duarte R (1994) Analysis of nucleotide substitutions and amino acid conservation in the Drosophila Adh genomic region. Genetica 94:27–36

    Article  PubMed  CAS  Google Scholar 

  • Alturfan AA, Tozan-Beceren A, Sehirli AO, Demiralp E, Sener G, Omurtag GZ (2011) Resveratrol ameliorates oxidative DNA damage and protects against acrylamide-induced oxidative stress in rats. Mol Biol Rep 39:4589–4596

    Article  PubMed  Google Scholar 

  • Aquea F, Vega A, Timmermann T, Poupin MJ, Arce-Johnson P (2011) Genome-wide analysis of the SET DOMAIN GROUP family in grapevine. Plant Cell Rep 30:1087–1097

    Article  PubMed  CAS  Google Scholar 

  • Brunner S, Fengler K, Morgante M, Tingey S, Rafalski A (2005) Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17:343–360

    Article  PubMed  CAS  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10

    Article  PubMed  Google Scholar 

  • Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485

    Article  PubMed  CAS  Google Scholar 

  • Chi Y, Cheng Y, Vanitha J, Kumar N, Ramamoorthy R, Ramachandran S, Jiang SY (2011) Expansion mechanisms and functional divergence of the glutathione s-transferase family in sorghum and other higher plants. DNA Res 18:1–16

    Article  PubMed  CAS  Google Scholar 

  • Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris NN, Walker AR, Robinson SP, Bogs J (2009) The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol 151:1513–1530

    Article  PubMed  CAS  Google Scholar 

  • Deluc L, Barrieu F, Marchive C, Lauvergeat V, Decendit A, Richard T, Carde JP, Merillon JM, Hamdi S (2006) Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol 140:499–511

    Article  PubMed  CAS  Google Scholar 

  • Deluc L, Bogs J, Walker AR, Ferrier T, Decendit A, Merillon JM, Robinson SP, Barrieu F (2008) The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiol 147:2041–2053

    Article  PubMed  CAS  Google Scholar 

  • Du D, Hao RJ, Cheng TR, Pan HT, Yang WR, Wang J, Zhang QX (2012) Genome-wide analysis of the AP2/ERF gene family in Prunus mume. Plant Mol Biol Rep. doi:10.1007/s11105-012-0531-6

  • Falginella L, Castellarin SD, Testolin R, Gambetta GA, Morgante M, Di Gaspero G (2010) Expansion and subfunctionalisation of flavonoid 3′,5′-hydroxylases in the grapevine lineage. BMC Genomics 11:562

    Article  PubMed  Google Scholar 

  • Flagel LE, Wendel JF (2009) Gene duplication and evolutionary novelty in plants. New Phytol 183:557–564

    Article  PubMed  Google Scholar 

  • Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60:433–453

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Fernandez J (2005) The genesis and evolution of homeobox gene clusters. Nat Rev Genet 6:881–892

    Article  PubMed  CAS  Google Scholar 

  • Grimmig B, Gonzalez-Perez MN, Leubner-Metzger G, Vogeli-Lange R, Meins F Jr, Hain R, Penuelas J, Heidenreich B, Langebartels C, Ernst D, Sandermann H Jr (2003) Ozone-induced gene expression occurs via ethylene-dependent and -independent signalling. Plant Mol Biol 51:599–607

    Article  PubMed  CAS  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  PubMed  CAS  Google Scholar 

  • Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573

    Article  PubMed  CAS  Google Scholar 

  • Kaessmann H, Vinckenbosch N, Long M (2009) RNA-based gene duplication: mechanistic and evolutionary insights. Nat Rev Genet 10:19–31

    Article  PubMed  CAS  Google Scholar 

  • Kiselev KV, Dubrovina AS, Veselova MV, Bulgakov VP, Fedoreyev SA, Zhuravlev YN (2007) The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. J Biotechnol 128:681–692

    Article  PubMed  CAS  Google Scholar 

  • Krysan PJ, Jester PJ, Gottwald JR, Sussman MR (2002) An Arabidopsis mitogen-activated protein kinase kinase kinase gene family encodes essential positive regulators of cytokinesis. Plant Cell 14:1109–1120

    Article  PubMed  CAS  Google Scholar 

  • Licausi F, Giorgi FM, Zenoni S, Osti F, Pezzotti M, Perata P (2009) Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics 11:719

    Article  Google Scholar 

  • Martin DM, Aubourg S, Schouwey MB, Daviet L, Schalk M, Toub O, Lund ST, Bohlmann J (2010) Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol 10:226

    Article  PubMed  Google Scholar 

  • Matus JT, Aquea F, Arce-Johnson P (2008) Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol 8:83

    Article  PubMed  Google Scholar 

  • Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130

    PubMed  CAS  Google Scholar 

  • O’Connor DJ, Wong RW, Rabie AB (2011) Resveratrol inhibits periodontal pathogens in vitro. Phytother Res 25:1727–1731

    Article  PubMed  Google Scholar 

  • O’Toole N, Hattori M, Andres C, Iida K, Lurin C, Schmitz-Linneweber C, Sugita M, Small I (2008) On the expansion of the pentatricopeptide repeat gene family in plants. Mol Biol Evol 25:1120–1128

    Article  PubMed  Google Scholar 

  • Omura T (1999) Forty years of cytochrome P450. Biochem Biophys Res Commun 266:690–698

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboobur R, Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Richter TE, Ronald PC (2000) The evolution of disease resistance genes. Plant Mol Biol 42:195–204

    Article  PubMed  CAS  Google Scholar 

  • Ronald PC (1998) Resistance gene evolution. Curr Opin Plant Biol 1:294–298

    Article  PubMed  CAS  Google Scholar 

  • Rudrabhatla P, Reddy MM, Rajasekharan R (2006) Genome-wide analysis and experimentation of plant serine/threonine/tyrosine-specific protein kinases. Plant Mol Biol 60:293–319

    Article  PubMed  CAS  Google Scholar 

  • Santamaria AR, Antonacci D, Caruso G, Cavaliere C, Gubbiotti R, Lagana A, Valletta A, Pasqua G (2010) Stilbene production in cell cultures of Vitis vinifera L. cvs Red Globe and Michele Palieri elicited by methyl jasmonate. Nat Prod Res 24:1488–1498

    Article  PubMed  CAS  Google Scholar 

  • Schubert R, Fischer R, Hain R, Schreier PH, Bahnweg G, Ernst D, Sandermann H Jr (1997) An ozone-responsive region of the grapevine resveratrol synthase promoter differs from the basal pathogen-responsive sequence. Plant Mol Biol 34:417–426

    Article  PubMed  CAS  Google Scholar 

  • Tassoni A, Fornale S, Franceschetti M, Musiani F, Michael AJ, Perry B, Bagni N (2005) Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. New Phytol 166:895–905

    Article  PubMed  CAS  Google Scholar 

  • This P, Lacombe T, Thomas MR (2006) Historical origins and genetic diversity of wine grapes. Trends Genet 22:511–519

    Article  PubMed  CAS  Google Scholar 

  • Vannozzi A, Dry IB, Fasoli M, Zenoni S, Lucchin M (2012) Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses. BMC Plant Biol 12:130

    Article  PubMed  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Dematte L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2:e1326

    Article  PubMed  Google Scholar 

  • Wang W, Zheng H, Fan C, Li J, Shi J, Cai Z, Zhang G, Liu D, Zhang J, Vang S, Lu Z, Wong GK, Long M, Wang J (2006) High rate of chimeric gene origination by retroposition in plant genomes. Plant Cell 18:1791–1802

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Wang X, Tang H, Tan X, Ficklin SP, Feltus FA, Paterson AH (2011) Modes of gene duplication contribute differently to genetic novelty and redundancy, but show parallels across divergent angiosperms. PLoS One 6:e28150

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Zhang HB, Yang YM, Davies KM (2012a) Isolation and partial characterization of an R2R3MYB transcription factor from the bamboo species Fargesia fungosa. Plant Mol Biol Rep 30:131–138

    Article  CAS  Google Scholar 

  • Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH (2012b) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Zheng Y, Xin HP, Fang LC, Li SH (2013) Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera. Plant Cell Rep 32:61–75

    Article  PubMed  Google Scholar 

  • Yamamoto E, Knap HT (2001) Soybean receptor-like protein kinase genes: paralogous divergence of a gene family. Mol Biol Evol 18:1522–1531

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, He M, Zhu Z, Li S, Xu Y, Zhang C, Singer SD, Wang Y (2012) Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol 12:140

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Li J, Zhao XQ, Wang J, Wong GK, Yu J (2006) KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinforma 4:259–263

    Article  CAS  Google Scholar 

  • Zhang Z, Xiao J, Wu J, Zhang H, Liu G, Wang X, Dai L (2012) ParaAT: a parallel tool for constructing multiple protein-coding DNA alignments. Biochem Biophys Res Commun 419:779–781

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by the National Natural Science Foundation of China (NSFC accession No.: 31171931) and the National Natural Science Foundation of Hubei Province (No.: 2011CDB409).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nian Wang or Shaohua Li.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Duplication types for all grapevine genes. The names of genes are given according to the 12− V. vinifera genomic sequence (PDF 198 kb)

Supplementary Table 2

Valid pairs for genome-wide duplicated genes (PDF 37 kb)

Supplementary Table 3

Valid pairs for tandem duplicated genes (PDF 16 kb)

Supplementary Table 4

Valid pairs for proximal duplicated genes (PDF 29 kb)

Supplementary Table 5

Valid pairs for retrotansposed duplicated genes (PDF 18 kb)

Supplementary Table 6

Valid pairs for DNA-based transposed duplicated genes (PDF 58 kb)

Supplementary Table 7

Grapevine gene families. The information was summarized from plant gene family database (http://green.dna.affrc.go.jp/PGF-DB/index.html) (PDF 662 kb)

Supplementary Table 8

Expansion of grapevine gene families (PDF 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, N., Xiang, Y., Fang, L. et al. Patterns of Gene Duplication and Their Contribution to Expansion of Gene Families in Grapevine. Plant Mol Biol Rep 31, 852–861 (2013). https://doi.org/10.1007/s11105-013-0556-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0556-5

Keywords

Navigation