Skip to main content
Log in

Lysine racemase: a novel non-antibiotic selectable marker for plant transformation

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A non-antibiotic based selection system using l-lysine as selection agent and the lysine racemase (lyr) as selectable marker gene for plant transformation was established in this study. l-lysine was toxic to plants, and converted by Lyr into d-lysine which would subsequently be used by the transgenic plants as nitrogen source. Transgenic tobacco and Arabidopsis plants were successfully recovered on l-lysine medium at efficiencies of 23 and 2.4%, respectively. Phenotypic characterization of transgenic plants clearly revealed the expression of normal growth and developmental characteristics as that of wild-type plants, suggesting no pleiotropic effects associated with the lyr gene. The specific activity of Lyr in transgenic tobacco plants selected on l-lysine ranged from 0.77 to 1.06 mU/mg protein, whereas no activity was virtually detectable in the wild-type plants. In addition, the composition of the free amino acids, except aspartic acid, was not affected by the expression of the lyr gene in the transgenic tobacco plants suggesting very limited interference with endogenous amino acid metabolism. Interestingly, our findings also suggested that the plant aspartate kinases may possess an ability to distinguish the enantiomers of lysine for feedback regulation. To our knowledge, this is the first report to demonstrate that the lysine racemase selectable marker system is novel, less controversial and inexpensive than the traditional selection systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • ACNFP (1994) Report on the use of antibiotic resistance markers in genetically modified food organisms. Advisory Committee on Novel Foods and Processes. Department of Health and Ministry of Agriculture, Fisheries and Food, London

    Google Scholar 

  • Arruda P, Bright SW, Kueh JSH, Lea PJ, Rognes SE (1984) Regulation of aspartate kinase isoenzymes in barley mutants resistant to lysine plus threonine. Plant Physiol 76:442–446. doi:10.1104/pp.76.2.442

    Article  CAS  PubMed  Google Scholar 

  • Arumugam N, Gupta V, Jagannath A, Mukhopadhyay A, Pradhan AK, Burma PK et al (2007) A passage through in vitro culture leads to efficient production of marker-free transgenic plants in Brassica juncea using the Cre-loxP system. Transgenic Res 16:703–712. doi:10.1007/s11248-006-9058-7

    Article  CAS  PubMed  Google Scholar 

  • Blundy KS, Blundy MAC, Carter D, Wilson F, Park WD, Burrell MM (1991) The expression of class I patatin gene fusions in transgenic potato varies with both gene and cultivar. Plant Mol Biol 16:153–160. doi:10.1007/BF00017925

    Article  CAS  PubMed  Google Scholar 

  • Boorer KJ, Frommer WB, Bush DR, Kreman M, Loo DDF, Wright EM (1996) Kinetics and specificity of a H+/amino acid transporter from Arabidopsis thaliana. J Biol Chem 271:2213–2220. doi:10.1074/jbc.271.4.2213

    Article  CAS  PubMed  Google Scholar 

  • Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR et al (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510. doi:10.1105/tpc.13.7.1499

    Article  CAS  PubMed  Google Scholar 

  • Bryan JK (1980) Synthesis of the aspartate family and branched chain amino acids. In: Miflin BJ (ed) The biochemistry of plants, vol 5. Academic Press, New York, pp 403–452

    Google Scholar 

  • Chan YL, Lin KH, Sanjaya, Liao LJ, Chen WH, Chan MT (2005) Gene stacking in Phalaenopsis orchid enhances dual tolerance to pathogen attack. Transgenic Res 14:279–288. doi:10.1007/s11248-005-0106-5

    Article  CAS  PubMed  Google Scholar 

  • Chen PY, Wang CK, Soong SC, To KY (2003) Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Mol Breed 11:287–293. doi:10.1023/A:1023475710642

    Article  CAS  Google Scholar 

  • Chen IC, Lin WD, Hsu SK, Thiruvengadam V, Hsu WH (2009) Isolation and characterization of a novel lysine racemase from a soil metagenomic library. Appl Environ Microbiol 75:5161–5166. doi:10.1128/AEM.00074-09

    Article  CAS  PubMed  Google Scholar 

  • Cho HJ, Brotherton JE, Widholm JM (2004) Use of the tobacco feedback-insensitive anthranilate synthase gene (ASA2) as a selectable marker for legume hairy root transformation. Plant Cell Rep 23:104–113. doi:10.1007/s00299-004-0789-8

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi:10.1046/j.1365-313x.1998.00343.x

    Article  CAS  PubMed  Google Scholar 

  • Cotsaftis O, Sallaud C, Breitler JC, Meynard D, Greco R, Pereira A et al (2002) Transposon-mediated generation of T-DNA- and marker-free rice plants expressing a Bt endotoxin gene. Mol Breed 10:165–180. doi:10.1023/A:1020380305904

    Article  CAS  Google Scholar 

  • Cuellar W, Gaudin A, Solórzano D, Casas A, Nopo L, Chudalayandi P et al (2006) Self-excision of the antibiotic resistance gene nptII using a heat inducible Cre-loxP system from transgenic potato. Plant Mol Biol 62:71–82. doi:10.1007/s11103-006-9004-3

    Article  CAS  PubMed  Google Scholar 

  • Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 88:10558–10562. doi:10.1073/pnas.88.23.10558

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Muthukumar B, Lee SB (2001) Marker free transgenic plants: engineering the chloroplast genome without use of antibiotic selection. Curr Genet 39:109–116. doi:10.1007/s002940100185

    Article  CAS  PubMed  Google Scholar 

  • Darbani B, Eimanifar A, Stewart CN Jr, Camargo WN (2007) Methods to produce marker-free transgenic plants. Biotechnol J 2:83–90. doi:10.1002/biot.200600182

    Article  CAS  PubMed  Google Scholar 

  • De Block M, De Brower D, Tenning P (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol 91:694–701. doi:10.1104/pp.91.2.694

    Article  PubMed  Google Scholar 

  • de Vetten N, Wolters AM, Raemakers K, van der Meer I, ter Stege R, Heeres E et al (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442. doi:10.1038/nbt801

    Article  PubMed  Google Scholar 

  • Dean C, Jones J, Favreau M, Dunsmuir JP, Bedbrook J (1988) Influence of flanking sequences on variability in expression levels of an introduced gene in transgenic tobacco plants. Nucleic Acids Res 16:9267–9283. doi:10.1093/nar/16.19.9267

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci USA 94:2117–2121. doi:10.1073/pnas.94.6.2117

    Article  CAS  PubMed  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Endo S, Yamada K, Komamine A (2001) Systems for the removal of a selection marker and their combination with a positive marker. Plant Cell Rep 20:383–392. doi:10.1007/s002990100344

    Article  CAS  Google Scholar 

  • Ebmeier A, Allison L, Cerutti H, Clemente T (2004) Evaluation of the Escherichia coli threonine deaminase gene as a selectable marker for plant transformation. Planta 218:751–758. doi:10.1007/s00425-003-1129-x

    Article  CAS  PubMed  Google Scholar 

  • Endo S, Sugita K, Sakai M, Tanaka H, Ebinuma H (2002) Single-step transformation for generating marker-free transgenic rice using the ipt-type MAT vector system. Plant J 30:115–122. doi:10.1046/j.1365-313X.2002.01272.x

    Article  CAS  PubMed  Google Scholar 

  • Erikson O, Hertzberg M, Nasholm T (2004) A conditional marker gene allowing both positive and negative selection in plants. Nat Biotechnol 22:455–458. doi:10.1038/nbt946

    Article  CAS  PubMed  Google Scholar 

  • Erikson O, Hertzberg M, Nasholm T (2005) The dsdA gene from Escherichia coli provides a novel selectable marker for plant transformation. Plant Mol Biol 57:425–433. doi:10.1007/s11103-004-7902-9

    Article  CAS  PubMed  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP et al (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803–4807

    Article  CAS  PubMed  Google Scholar 

  • Frommer WB, Hummel S, Unseld M, Ninnemann O (1995) Seed and vascular expression of a high-affinity transporter for cationic amino acids in Arabidopsis. Proc Natl Acad Sci USA 92:12036–12040

    Article  CAS  PubMed  Google Scholar 

  • Gamburg KZ, Rekoslavskaya NI (1991) Formation and function of D-amino acids in plants. Soviet Plant Physiol 38:904–912

    Google Scholar 

  • Gleave AP, Mitra DS, Mudge SR, Morris BAM (1999) Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol Biol 40:223–235. doi:10.1023/A:1006184221051

    Article  CAS  PubMed  Google Scholar 

  • Goldbrough AP, Lastrella CN, Yoder JI (1993) Transposition mediated repositioning and subsequent elimination of marker genes from transgenic tomato. Bio/Tech 11:1286–1292. doi:10.1038/nbt1193-1286

    Google Scholar 

  • Haldrup A, Petersen S, Okkels F (1998) The xylose isomerase gene from Thermoanaerobacterium thermosulfurogenes allows effective selection of transgenic plant cells using D-xylose as the selection agent. Plant Mol Biol 37:287–296. doi:10.1023/A:1005910417789

    Article  CAS  PubMed  Google Scholar 

  • Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4:226–231. doi:10.1016/S1360-1385(99)01412-0

    Article  PubMed  Google Scholar 

  • Hoa TTC, Bong BB, Huq E, Hodges TK (2002) Cre/lox site-specific recombination controls the excision of a transgene from the rice genome. Theor Appl Genet 104:518–525. doi:10.1007/s001220100748

    Article  CAS  PubMed  Google Scholar 

  • Höfgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877. doi:10.1093/nar/16.20.9877

    Article  PubMed  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231. doi:10.1126/science.227.4691.1229

    Article  CAS  Google Scholar 

  • Hsiao P, Sanjaya, Su RC, Teixeira da Silva JA, Chan MT (2007) Plant native tryptophan synthase beta 1 gene is a non-antibiotic selection marker for plant transformation. Planta 225:897–906. doi:10.1007/s00425-006-0405-y

    Article  CAS  PubMed  Google Scholar 

  • Huang HT, Davisson JW (1958) Distribution of lysine racemase in bacteria. J Bacteriol 76:495–498

    CAS  PubMed  Google Scholar 

  • Joersbo M, Okkels FT (1996) A novel principle for selection of transgenic plant cells: positive selection. Plant Cell Rep 16:219–221. doi:10.1007/s002990050210

    Article  CAS  Google Scholar 

  • Joersbo M, Donaldson I, Kreiberg J, Petersen SG, Brunstedt J, Okkels F (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breed 4:111–117. doi:10.1023/A:1009633809610

    Article  CAS  Google Scholar 

  • Joersbo M, Joregensen K, Brunstedt J (2003) A selection system for transgenic plants based on galactose as selective agent and a UDP-glucose: galactose-1-phosphate uridyltransferase gene as selective gene. Mol Breed 11:315–323. doi:10.1023/A:1023402424215

    Article  CAS  Google Scholar 

  • Kerbach S, Lörz H, Becker D (2005) Site-specific recombination in Zea mays. Theor Appl Genet 111:1608–1616. doi:10.1007/s00122-005-0092-2

    Article  CAS  PubMed  Google Scholar 

  • Klaus SMJ, Huang FC, Golds TJ, Koop HU (2004) Generation of marker-free plasmid transformants using a transiently cointegrated selection gene. Nat Biotechnol 22:225–229. doi:10.1038/nbt933

    Article  CAS  PubMed  Google Scholar 

  • Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174. doi:10.1046/j.1365-313X.1996.10010165.x

    Article  CAS  PubMed  Google Scholar 

  • Kunkel T, Niu QW, Chan YS, Chua NH (1999) Inducible isopentenyl transferase as a high-efficiency marker for plant transformation. Nat Biotechnol 17:916–919. doi:10.1038/12914

    Article  CAS  PubMed  Google Scholar 

  • Kunze I, Ebneth M, Heim U, Geiger M, Sonnewald U, Herbers K (2001) 2-Deoxyglucose resistance: a novel selection marker for plant transformation. Mol Breed 7:221–227. doi:10.1023/A:1011307508252

    Article  CAS  Google Scholar 

  • LaFayette PR, Kane PM, Phan BH, Parrott WA (2005) Arabitol dehydrogenase as a selectable marker for rice. Plant Cell Rep 24:596–602. doi:10.1007/s00299-005-0015-3

    Article  CAS  PubMed  Google Scholar 

  • Leyman B, Avonce N, Ramon M, Dijck PV, Iturriaga G, Thevelein JM (2006) Trehalose-6-phosphate synthase as an intrinsic selection marker for plant transformation. J Biotechnol 121(3):309–317. doi:10.1016/j.jbiotec.2005.08.033

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Xing A, Moon BP, Burgoyne SA, Guida AD, Liang H et al (2007) A Cre/loxP-mediated self-activating gene excision system to produce marker gene free transgenic soybean plants. Plant Mol Biol 65:329–341. doi:10.1007/s11103-007-9223-2

    Article  CAS  PubMed  Google Scholar 

  • Li B, Xie C, Qiu H (2009) Production of selectable marker-free transgenic tobacco plants using a non-selection approach: chimerism or escape, transgene inheritance, and efficiency. Plant Cell Rep 28:373–386. doi:10.1007/s00299-008-0640-8

    Article  CAS  PubMed  Google Scholar 

  • Lin WD, Wu JY, Lai CC, Tsai FJ, Tsai CH, Lin SP et al (2001) A pilot study of neonatal screening by electrospray ionization tandem mass spectrometry in Taiwan. Acta Paediatr Taiwan 42:224–230

    CAS  PubMed  Google Scholar 

  • Lindsey K, Gallois P (1990) Transformation of sugarbeet (Beta vulgaris) by Agrobacterium tumefaciens. J Exp Bot 41:529–536. doi:10.1093/jxb/41.5.529

    Article  CAS  Google Scholar 

  • Luo K, Xuelian Z, Yongqin C, Yuehua X, Degang Z, Richard M et al (2006) The maize Knotted1 gene is an effective positive selectable marker gene for Agrobacterium-mediated tobacco transformation. Plant Cell Rep 25:403–409. doi:10.1007/s00299-005-0051-z

    Article  CAS  PubMed  Google Scholar 

  • Marjanac G, De Paepe A, Peck I, Jacobs A, De Buck S, Depicker A (2008) Evaluation of CRE-mediated excision approaches in Arabidopsis thaliana. Transgenic Res 17:239–250. doi:10.1007/s11248-007-9096-9

    Article  CAS  PubMed  Google Scholar 

  • Mentewab A, Stewart CN Jr (2005) Overexpression of an Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants. Nat Biotechnol 23:1177–1180. doi:10.1038/nbt1134

    Article  CAS  PubMed  Google Scholar 

  • Miao S, Duncan DR, Widholm JM (1988) Selection of regenerable maize callus cultures resistant to 5-methyl-DL-tryptophane, S-2-aminoethyl-L-cysteine and high levels of l-lysine plus l-threonine. Plant Cell Tissue Org Cult 14:3–14. doi:10.1007/BF00029570

    Article  CAS  Google Scholar 

  • Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232. doi:10.1016/j.jbiotec.2003.10.011

    Article  CAS  PubMed  Google Scholar 

  • Miki B, Abdeen A, Manabe Y, MacDonald P (2009) Selectable marker genes and unintended changes to the plant transcriptome. Plant Biotechnol J 7:211–218. doi:10.1111/j.1467-7652.2009.00400.x

    Article  CAS  PubMed  Google Scholar 

  • Mlynárová L, Loonen A, Heldens J, Jansen RC, Keizer P, Stiekema WJ et al (1994) Reduced position effect in mature transgenic plants conferred by the chicken lysozyme matrix-associated region. Plant Cell 6:417–426. doi:10.1105/tpc.6.3.417

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Peach C, Velten J (1991) Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol 17:49–60. doi:10.1007/BF00036805

    Article  CAS  PubMed  Google Scholar 

  • Perl A, Galili S, Shaul O, Ben-Tzvi I, Galili G (1993) Bacterial dihydrodipicolinate synthase and desensitized aspartate kinase: two novel selectable markers for plant transformation. Bio/Tech 11:715–718. doi:10.1038/nbt0693-715

    Article  CAS  Google Scholar 

  • Rashed M, Ozand PT, Bucknall MP, Little D (1995) Diagnosis of inborn errors of metabolism from blood spots by acylcarnitines and aminoacids profiling using automated electrospray tandem mass spectrometry. Pediatr Res 38:324–331

    CAS  PubMed  Google Scholar 

  • Rognes SE, Simon WJ, Miflin BJ (1983) Feedback-insensitive aspartate kinase isoenzymes in barley mutants resistant to lysine plus threonine. Planta 157:32–38. doi:10.1007/BF00394537

    Article  CAS  Google Scholar 

  • Rommens CM (2004) All-native DNA transformation: a new approach to plant genetic engineering. Trends Plant Sci 9:1360–1385. doi:10.1016/j.tplants.2004.07.001

    Article  Google Scholar 

  • Rosellini D, Capomaccio S, Ferradini N, Sardaro MLS, Nicolia A, Veronesi F (2007) Non-antibiotic, efficient selection for alfalfa genetic engineering. Plant Cell Rep 26:1035–1044. doi:10.1007/s00299-007-0321-z

    Article  CAS  PubMed  Google Scholar 

  • Russell SH, Hoopes JL, Odell JT (1992) Directed excision of a transgene from the plant genome. Mol Gen Genet 234:49–59. doi:10.1007/BF00272344

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Scutt CP, Zubko E, Meyer P (2002) Techniques for the removal of marker genes from transgenic plants. Biochimie 84:1119–1126. doi:10.1016/S0300-9084(02)00021-4

    Article  CAS  PubMed  Google Scholar 

  • Steinberg RA (1951) Amino acid toxicities to tobacco varieties differing in resistance to black root-rot. Bull Torrey Bot Club 78:227–232

    Article  CAS  Google Scholar 

  • Tian L, Jordan M, Miki B (2006) Markers and selector genes for plant transformation. In: Teixeira da Silva JA (ed) Ornamental and plant biotechnology, vol II. Global Science Books, London, pp 9–20

    Google Scholar 

  • Tokuyama S, Hatano K (1995) Purification and properties of thermostable N-acylamino acid racemase from Amycolatopsis sp. TS-1–60. Appl Microbiol Biotechnol 42:853–859. doi:10.1007/BF00191181

    Article  CAS  PubMed  Google Scholar 

  • Waldron C, Murphy EB, Roberts JL, Gustafson GD, Armour SL, Malcolm SK (1985) Resistance to hygromycin B. Plant Mol Biol 5:103–108. doi:10.1007/BF00020092

    Article  CAS  Google Scholar 

  • You SJ, Liau CH, Huang HE, Feng TY, Prasad V, Hsiao HH et al (2003) Sweet pepper ferredoxin-like protein (pflp) gene as a novel selection marker for orchid transformation. Planta 217:60–65. doi:10.1007/s00425-002-0970-7

    CAS  PubMed  Google Scholar 

  • Zhang W, Subbarao S, Addae P, Shen A, Armstrong C, Peschke V et al (2003) Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet 107:1157–1168. doi:10.1007/s00122-003-1368-z

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li H, Ouyang B, Lu Y, Ye Z (2006) Chemical-induced autoexcision of selectable markers in elite tomato plants transformed with a gene conferring resistance to lepidopteran insects. Biotechnol Lett 28:1247–1253. doi:10.1007/s10529-006-9081-z

    Article  CAS  PubMed  Google Scholar 

  • Zhang WJ, Yang SS, Shen XY, Jin YS, Zhao HJ, Wang T (2009) The salt-tolerance gene rstB can be used as a selectable marker in plant genetic transformation. Mol Breed 23:269–277. doi:10.1007/s11032-008-9231-1

    Article  Google Scholar 

  • Zubko E, Scutt C, Meyer P (2000) Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nat Biotechnol 18:442–445. doi:10.1038/74515

    Article  CAS  PubMed  Google Scholar 

  • Zuo J, Niu QW, Møller SG, Chua NH (2001) Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol 19:157–161. doi:10.1038/84428

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Chang-Hsien Yang (Professor, Institute of Biotechnology, NCHU) for his generous gift of Arabidopsis thaliana (ecotype Columbia) seeds and Agrobacterium strain GV3101 and also providing the growth chamber facilities for the maintenance of Arabidopsis transformants. This work was supported by the grants from the Council of Agriculture (96 AS-1.1.1-FD-Z1) and National Science Council (NSC 92-2317-B-005-018), Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Hwei Hsu.

Additional information

I-Chieh Chen and Venkatesan Thiruvengadam contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 238 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, IC., Thiruvengadam, V., Lin, WD. et al. Lysine racemase: a novel non-antibiotic selectable marker for plant transformation. Plant Mol Biol 72, 153–169 (2010). https://doi.org/10.1007/s11103-009-9558-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9558-y

Keywords

Navigation