Skip to main content
Log in

A passage through in vitro culture leads to efficient production of marker-free transgenic plants in Brassica juncea using the Cre–loxP system

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The Cre–loxP site-specific recombination system was deployed for removal of marker genes from Brassica juncea (Indian mustard). Excision frequencies, monitored by removal of nptII or gfp genes in F1 plants of crosses between LOX and CRE lines, were high in quiescent, differentiated somatic tissues but extremely poor in the meristematic regions (and consequently the germinal cells) thus preventing identification and selection of marker-free transgenic events which are devoid of both the marker gene as well as the cre gene, in F2 progeny. We show that a passage through in vitro culture of F1 leaf explants allows efficient development of marker-free transgenics in the F2 generation addressing current limitations associated with efficient use of the Cre/loxP technology for marker gene removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chen S, Li X, Liu X, Xu H, Meng K, Xiao G, Wei X, Wang F, Zhu Z (2005) Green fluorescent protein as a vital elimination marker to easily screen marker-free transgenic progeny derived from plants co-transformed with double T-DNA binary vector system. Plant Cell Rep 23:625–631

    Article  PubMed  CAS  Google Scholar 

  • Cornielle S, Lutz K, Svab Z, Maliga P (2001) Efficient elimination of selectable marker genes from the plastid genome by CRE-lox site-specific recombination system. Plant J 27:171–178

    Article  Google Scholar 

  • Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 88:10558–10562

    Article  PubMed  CAS  Google Scholar 

  • Dillon PJ, Rosen CA (1990) A rapid method for the construction of synthetic genes using the polymerase chain reaction. Biotechniques 9:298–299

    PubMed  CAS  Google Scholar 

  • Gleave AP, Mitra DS, Mudge SR, Morris BAM (1999) Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol Biol 40:223–235

    Article  PubMed  CAS  Google Scholar 

  • Goldsbrough AP, Lastrella CN, Yoder JI (1993) Transposition mediated re-positioning and subsequent elimination of marker genes from transgenic tomato. Bio/technology 11:1286–1292

    CAS  Google Scholar 

  • Grover A, Pental D (2003) Breeding objectives and requirements for producing transgenics for major field crops of India. Curr Sci 84:310–320

    Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:939–994

    Article  Google Scholar 

  • Halpin C (2005) Gene stacking in transgenic plants – the challenge for 21st century plant biotechnology. Plant Biotech J 3:141–155

    Article  CAS  Google Scholar 

  • Hare PD, Chua N-H (2002) Excision of selectable marker genes from transgenic plants. Nat Biotechnol 20:575–580

    Article  PubMed  CAS  Google Scholar 

  • Hoa TT, Bong BB, Huq E, Hodges TK (2002) Cre-lox site-specific recombination controls the excision of a transgene from the rice genome. Theor Appl Genet 104:518–525

    Article  PubMed  CAS  Google Scholar 

  • Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18:1172–1176

    Article  PubMed  CAS  Google Scholar 

  • Klimyuk VI, Carroll BJ, Thomas CM, Jones JDG (1993) Alkali treatment for rapid preparation of plant tissue for reliable PCR analysis. Plant J 3:493–494

    Article  PubMed  CAS  Google Scholar 

  • Konig A (2003) A framework for designing transgenic crops—science, safety and citizen’s concerns. Nat Biotechnol 21:1274–1279

    Article  PubMed  Google Scholar 

  • Kumpatla SP, Chandrasekharan MB, Iyer LM, Li G, Hall TC (1998) Genome intruder scanning and modulation systems and transgene silencing. Trends Plant Sci 3:97–104

    Article  Google Scholar 

  • Lyznik LA, Gordon-Kamm WJ, Tao Y (2003) Site-specific recombination for genetic engineering in plants. Plant Cell Rep 21:925–932

    Article  PubMed  CAS  Google Scholar 

  • Mattanovich D, Riiker F, Machado A, Laimer M, Regner F, Steinkellner H, Himmler G, Katinger H (1989) Efficient transformation of Agrobacterium spp by electroporation. Nucleic Acids Res 17:6747

    Article  PubMed  CAS  Google Scholar 

  • Matthews PR, Wang MB, Waterhouse PM, Thornton S, Fieg SJ, Gubler F, Jacobson JV (2001) Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNA’ on a standard Agrobacterium transformation vector. Mol Breed 7:195–202

    Article  CAS  Google Scholar 

  • Mehra S, Pareek A, Bandyopadhyay P, Sharma P, Burma PK, Pental D (2000) Development of transgenics in Indian oilseed mustard (Brassica juncea) resistant to herbicide phosphinotricin. Curr Sci 78:1358–1364

    CAS  Google Scholar 

  • Odell J, Caimi P, Sauer B, Russell S (1990) Site-directed recombination in the genome of transgenic tobacco. Mol Gen Genet 223:369–378

    Article  PubMed  CAS  Google Scholar 

  • Ow DW (2002) Recombinase-directed plant transformation for the post-genomic era. Plant Mol Biol 48:183–200

    Article  PubMed  CAS  Google Scholar 

  • Park J, Lee YK, Kang BK, Chung WH (2004) Co-transformation using a negative selectable marker gene for the production of selectable marker gene-free transgenic plants. Theor Appl Genet 109:1562–1567

    Article  PubMed  CAS  Google Scholar 

  • Rogers SO, Bendich AJ (1994) Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual, 2nd edn, vol D1. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1–8

    Google Scholar 

  • Rommens CM, Humara JM, Ye J, Yan H, Richael C, Zhang L, Perry R, Swords K (2004) Crop improvement through modification of plant’s own genome. Plant Physiol 135:421–431

    Article  PubMed  CAS  Google Scholar 

  • Russel SH, Hoopes JL, Odell JT (1992) Directed excision of a transgene from the plant genome. Mol Gen Genet 243:49–59

    Google Scholar 

  • Salinas J, Matassi G, Montero LM, Bernardi G (1988) Compositional compartmentalization and compositional patterns in nuclear genomes of plant. Nucleic Acids Res 16:4269–4285

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sreekala C, Wu L, Gu K, Wang D, Tian D, Yin Z (2005) Excision of selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre/loxP system. Plant Cell Rep 24:86–94

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret H (1993) Identification of a general silencer for 19S and 35S promoters in a transgenic tobacco plants: 90 bp of homology in the promoter sequence are sufficient for trans-inactivation. CR Acad Sci 316:1471–1483

    CAS  Google Scholar 

  • Vergunst AC, Jansen LET, Hooykaas PJJ (1998) Site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana mediated by Cre recombinase. Nucleic Acids Res 26:2729–2734

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Chen B, Hu Y, Li J, Lin Z (2005) Inducible excision of selectable marker gene from transgenic plants by Cre/lox site-specific recombination system. Transgenic Res 14:605–614

    Article  PubMed  CAS  Google Scholar 

  • Yuan Y, Yun-Jun L, Tao W (2004) A new Cre/lox system for deletion of selectable marker gene. Acta Bot Sin 46:862–866

    CAS  Google Scholar 

  • Zhang W, Subbarao S, Addae P, Shen A, Armstrong C, Peschke V, Gilbertson L (2003) Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet 107:1157–1168

    Article  PubMed  CAS  Google Scholar 

  • Zuo J, Niu Q-W, Moller SG, Chua N-H (2001) Chemical-regulated, site specific DNA excision in transgenic plants. Nat Biotechnol 19:157–161

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this research was provided by DOFCO, a subsidiary of the National Dairy Development Board (NDDB). B. S. Yadav provided technical support. The gfp gene was a kind gift from Prof Jen Sheen. We are grateful to the Department of Botany, University of Delhi for extending use of the confocal microscope facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Pental.

Additional information

N. Arumugam and Vibha Gupta have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arumugam, N., Gupta, V., Jagannath, A. et al. A passage through in vitro culture leads to efficient production of marker-free transgenic plants in Brassica juncea using the Cre–loxP system. Transgenic Res 16, 703–712 (2007). https://doi.org/10.1007/s11248-006-9058-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-006-9058-7

Keywords

Navigation