Skip to main content

Advertisement

Log in

Dynamics of an electromagnetic vibro-impact nonlinear energy sink, applications in energy harvesting and vibration absorption

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dynamics of an electromagnetic vibro-impact nonlinear energy sink (VINES) is investigated. The system consists of a linear oscillator equipped with multiple turns of coil, coupled to a magnet attachment that undergoes two-sided inelastic impacts. The dynamical model is formulated in a dimensionless formula and handled using a multiscale expansion method with respect to the small mass ratio parameter. Under zero-order approximation, the simple periodic solutions with two impacts per cycle, together with their bifurcations and stabilities, are solved, giving a slow invariant manifold (SIM) including a symmetric branch and an asymmetric branch. Then the harmonic forced dynamics is studied by considering the first-order equations, evidencing the rich response regimes depending on the forcing condition. The developed framework contains the dynamics of classical VINES systems as its limit case when electric damping \(\beta =0\), and the obtained analytical results are in good agreement with numerical simulations. Finally, the developments are applied to the applications of vibration absorption and energy harvesting. The analytical predictions provide a deeper understanding to clearly explain the energy harvesting potential of the proposed electromagnetic VINES that is numerically observed in our previous investigation. In terms of vibration suppression, it is found that the proposed electromagnetic VINES can enhance the robustness of the TET efficiency by taking advantage of the electric damping, thus leading to a better performance than the conventional ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Starosvetsky, Y., Gendelman, O.V.: Vibration absorption in systems with a nonlinear energy sink: nonlinear damping. J. Sound Vib. 324(3–5), 916–939 (2009)

    Article  Google Scholar 

  2. Gendelman, O.V., Starosvetsky, Y., Feldman, M.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink i: description of response regimes. Nonlinear Dyn. 51(1–2), 31–46 (2008)

    MATH  Google Scholar 

  3. Li, H., Li, A., Kong, X.: Design criteria of bistable nonlinear energy sink in steady-state dynamics of beams and plates. Nonlinear Dyn. 103(2), 1475–1497 (2021)

    Article  Google Scholar 

  4. Qiu, D., Seguy, S., Paredes, M.: Design criteria for optimally tuned vibro-impact nonlinear energy sink. J. Sound Vib. 442, 497–513 (2019)

    Article  Google Scholar 

  5. Ding, H., Chen, L.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100, 3061–3107 (2020)

    Article  Google Scholar 

  6. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G., Nucera, F., Tsakirtzis, S., Panagopoulos, P.N.: Passive non-linear targeted energy transfer and its applications to vibration absorption: a review. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 222(2), 77–134 (2008)

    Google Scholar 

  7. Kopidakis, G., Aubry, S., Tsironis, G.P.: Targeted energy transfer through discrete breathers in nonlinear systems. Phys. Rev. Lett. 87(16), 165501 (2001)

    Article  Google Scholar 

  8. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear targeted energy transfer in mechanical and structural systems, vol. 156. Springer, New York (2008)

    MATH  Google Scholar 

  9. Vakakis, A.F., Gendelman, O.V.: Energy pumping in nonlinear mechanical oscillators: part II-resonance capture. J. Appl. Mech. 68(1), 42–48 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Vakakis, A.F., Manevitch, L.I., Gendelman, O.V., Bergman, L.: Dynamics of linear discrete systems connected to local, essentially non-linear attachments. J. Sound Vib. 264(3), 559–577 (2003)

    Article  Google Scholar 

  11. Lin, D.C., Oguamanam, D.C.D.: Targeted energy transfer efficiency in a low-dimensional mechanical system with an essentially nonlinear attachment. Nonlinear Dyn. 82(1–2), 971–986 (2015)

    Article  MathSciNet  Google Scholar 

  12. Lu, X., Liu, Z., Lu, Z.: Optimization design and experimental verification of track nonlinear energy sink for vibration control under seismic excitation. Struct. Control. Health Monit. 24(12), e2033 (2017)

    Article  Google Scholar 

  13. Al-Shudeifat, M.A., Wierschem, N.E., Bergman, L.A., Vakakis, A.F.: Numerical and experimental investigations of a rotating nonlinear energy sink. Meccanica 52(4–5), 763–779 (2017)

    Article  Google Scholar 

  14. Hsu, Y., Ferguson, N.S., Brennan, M.J.: The experimental performance of a nonlinear dynamic vibration absorber. In: Topics in Nonlinear Dynamics, vol. 1, pp. 247–257. Springer, New York (2013)

    Google Scholar 

  15. Blanchard, A., Bergman, L.A., Vakakis, A.F.: Vortex-induced vibration of a linearly sprung cylinder with an internal rotational nonlinear energy sink in turbulent flow. Nonlinear Dyn. 99(1), 593–609 (2020)

    Article  MATH  Google Scholar 

  16. Chen, D., Gu, C., Fang, K., Yang, J., Guo, D., Marzocca, P.: Vortex-induced vibration of a cylinder with nonlinear energy sink (nes) at low reynolds number. Nonlinear Dyn., 1–18 (2021)

  17. Feudo, S.L., Touzé, C., Boisson, J., Cumunel, G.: Nonlinear magnetic vibration absorber for passive control of a multi-storey structure. J. Sound Vib. 438, 33–53 (2019)

    Article  Google Scholar 

  18. Yang, K., Zhang, Y., Ding, H., Yang, T., Li, Y., Chen, L.: Nonlinear energy sink for whole-spacecraft vibration reduction. J. Vib. Acoust. 139, 2 (2017)

    Article  Google Scholar 

  19. Bichiou, Y., Hajj, M.R., Nayfeh, A.H.: Effectiveness of a nonlinear energy sink in the control of an aeroelastic system. Nonlinear Dyn. 86(4), 2161–2177 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, X., Zhang, Y., Ding, H., Chen, L.: Integration of a nonlinear energy sink and a piezoelectric energy harvester. Appl. Math. Mech. 38(7), 1019–1030 (2017)

    Article  MathSciNet  Google Scholar 

  21. Zhang, Y., Tang, L., Liu, K.: Piezoelectric energy harvesting with a nonlinear energy sink. J. Intell. Mater. Syst. Struct. 28(3), 307–322 (2017)

    Article  Google Scholar 

  22. Darabi, A., Leamy, M.J.: Clearance-type nonlinear energy sinks for enhancing performance in electroacoustic wave energy harvesting. Nonlinear Dyn. 87(4), 2127–2146 (2017)

    Article  Google Scholar 

  23. Xiong, L., Tang, L., Liu, K., Mace, B.R.: Broadband piezoelectric vibration energy harvesting using a nonlinear energy sink. J. Phys. D Appl. Phys. 51(18), 185502 (2018)

    Article  Google Scholar 

  24. Kremer, D., Liu, K.: A nonlinear energy sink with an energy harvester: transient responses. J. Sound Vib. 333(20), 4859–4880 (2014)

    Article  Google Scholar 

  25. Kremer, D., Liu, K.: A nonlinear energy sink with an energy harvester: harmonically forced responses. J. Sound Vib. 410, 287–302 (2017)

    Article  Google Scholar 

  26. Pennisi, G., Mann, B.P., Naclerio, N., Stephan, C., Michon, G.: Design and experimental study of a nonlinear energy sink coupled to an electromagnetic energy harvester. J. Sound Vib. 437, 340–357 (2018)

    Article  Google Scholar 

  27. Kong, X., Li, H., Wu, C.: Dynamics of 1-dof and 2-dof energy sink with geometrically nonlinear damping: application to vibration suppression. Nonlinear Dyn. 91(1), 733–754 (2018)

    Article  Google Scholar 

  28. Gendelman, O.V.: Analytic treatment of a system with a vibro-impact nonlinear energy sink. J. Sound Vib. 331(21), 4599–4608 (2012)

    Article  Google Scholar 

  29. Gourc, E., Michon, G., Seguy, S., Berlioz, A.: Targeted energy transfer under harmonic forcing with a vibro-impact nonlinear energy sink: analytical and experimental developments. J. Vib. Acoust. 137(3), 031008 (2015)

    Article  Google Scholar 

  30. Li, T., Seguy, S., Berlioz, A.: Optimization mechanism of targeted energy transfer with vibro-impact energy sink under periodic and transient excitation. Nonlinear Dyn. 87(4), 2415–2433 (2017)

    Article  Google Scholar 

  31. Li, T., Seguy, S., Berlioz, A.: On the dynamics around targeted energy transfer for vibro-impact nonlinear energy sink. Nonlinear Dyn. 87(3), 1453–1466 (2017)

    Article  Google Scholar 

  32. Li, W., Wierschem, N.E., Li, X., Yang, T., Brennan, M.J.: Numerical study of a symmetric single-sided vibro-impact nonlinear energy sink for rapid response reduction of a cantilever beam. Nonlinear Dyn., 1–21 (2020)

  33. Zhang, Y., Lu, Y., Zhang, W., Teng, Y., Yang, H., Yang, T., Chen, L.: Nonlinear energy sink with inerter. Mech. Syst. Signal Process. 125, 52–64 (2019)

    Article  Google Scholar 

  34. Javidialesaadi, A., Wierschem, N.E.: An inerter-enhanced nonlinear energy sink. Mech. Syst. Signal Process. 129, 449–454 (2019)

    Article  Google Scholar 

  35. Romeo, F., Sigalov, G., Bergman, L.A., Vakakis, A.F.: Dynamics of a linear oscillator coupled to a bistable light attachment: numerical study. J. Comput. Nonlinear Dyn. 10, 1 (2015)

    Google Scholar 

  36. Manevitch, L.I., Sigalov, G., Romeo, F., Bergman, L.A., Vakakis, A.F.: Dynamics of a linear oscillator coupled to a bistable light attachment: analytical study. J. Appl. Mech. 81, 4 (2014)

    Article  Google Scholar 

  37. Ding, H., Wang, G., Chen, L.: Performance evaluation and design criterion of a bistable nonlinear energy sink. (2021)

  38. Habib, G., Romeo, F.: The tuned bistable nonlinear energy sink. Nonlinear Dyn. 89(1), 179–196 (2017)

    Article  Google Scholar 

  39. Lieber, P., Jensen, D.P.: An acceleration damper: development, design and some applications. Trans. ASME 67(10), 523–530 (1945)

    Google Scholar 

  40. Gagnon, L., Morandini, M., Ghiringhelli, G.L.: A review of particle damping modeling and testing. J. Sound Vib. 459, 114865 (2019)

    Article  Google Scholar 

  41. Ibrahim, R.A.: Vibro-impact dynamics: modeling, mapping and applications, vol. 43. Springer, New York (2009)

    MATH  Google Scholar 

  42. Afsharfard, A.: Suppressing forced vibrations of structures using smart vibro-impact systems. Nonlinear Dyn. 83(3), 1643–1652 (2016)

    Article  MathSciNet  Google Scholar 

  43. Lu, Z., Wang, Z., Masri, S.F., Lu, X.: Particle impact dampers: past, present, and future. Struct. Control. Health Monit. 25(1), e2058 (2018)

    Article  Google Scholar 

  44. Karayannis, I., Vakakis, A.F., Georgiades, F.: Vibro-impact attachments as shock absorbers. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 222(10), 1899–1908 (2008)

    Article  Google Scholar 

  45. Al-Shudeifat, M.A., Wierschem, N., Quinn, D.D., Vakakis, A.F., Bergman, L.A., Spencer, B.F.: Numerical and experimental investigation of a highly effective single-sided vibro-impact non-linear energy sink for shock mitigation. Int. J. Non-Linear Mech. 52, 96–109 (2013)

    Article  Google Scholar 

  46. Li, W.K., Wierschem, N.E., Li, X.H., Yang, T.J.: On the energy transfer mechanism of the single-sided vibro-impact nonlinear energy sink. J. Sound Vib. 437, 166–179 (2018)

    Article  Google Scholar 

  47. Nucera, F., Vakakis, A.F., Mcfarland, D.M., Bergman, L.A., Kerschen, G.: Targeted energy transfers in vibro-impact oscillators for seismic mitigation. Nonlinear Dyn. 50(3), 651–677 (2007)

    Article  MATH  Google Scholar 

  48. Wei, Y.M., Dong, X.J., Guo, F.P., Feng, Z.K., Zhang, W.M.: Enhanced targeted energy transfer by vibro impact cubic nonlinear energy sink. Int. J. Appl. Mech. (2018)

  49. Yao, H., Cao, Y., Zhang, S., Wen, B.: A novel energy sink with piecewise linear stiffness. Nonlinear Dyn. (2018)

  50. Saeed, A.S., Al-Shudeifat, M.A., Vakakis, A.F., Cantwell, W.J.: Rotary-impact nonlinear energy sink for shock mitigation: analytical and numerical investigations. Arch. Appl. Mech. 90(3), 495–521 (2020)

    Article  Google Scholar 

  51. Wang, J., Wierschem, N., Spencer, B.F., Lu, X.: Numerical and experimental study of the performance of a single-sided vibro-impact track nonlinear energy sink. Earthq. Eng. Struct. Dyn. 45, 4 (2016)

    Article  Google Scholar 

  52. Li, H., Li, A.: Potential of a vibro-impact nonlinear energy sink for energy harvesting. Mech. Syst. Signal Process. 159, 107827 (2021)

    Article  Google Scholar 

  53. Serdukova, L., Kuske, R., Yurchenko, D.: Stability and bifurcation analysis of the period-t motion of a vibroimpact energy harvester. Nonlinear Dyn. 98(3), 1807–1819 (2019)

    Article  MATH  Google Scholar 

  54. Luo, A.: Period-doubling induced chaotic motion in the lr model of a horizontal impact oscillator. Chaos Solitons Fractals 19(4), 823–839 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  55. Luo, A.: An unsymmetrical motion in a horizontal impact oscillator. J. Vib. Acoust. 124(3), 420–426 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiqin Li.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Derivation of Eq. (26)

This appendix is devoted to the derivation of Eq. (26) by using the relationships in Eq. (24).

First of all, subtracting Eq. (24b) with Eq. (24a) yields

$$\begin{aligned} \begin{aligned} \cos (\tau _{0,k}+\psi ) -\cos (\tau _{0,k-1}+\psi )=\frac{N_{k-1}(a-b)}{(1+r) M}, \end{aligned}\nonumber \\ \end{aligned}$$
(A.1)

squaring Eqs. (A.1) and  (25) and adding both sides, one has

$$\begin{aligned} 2-2\cos T_u = \frac{N_{k-1}^2}{(1+r)^2 M^2}(a-b)^2 + \frac{(2-cN_{k-1})^2}{M^2},\nonumber \\ \end{aligned}$$
(A.2)

which is Eq. (26b).

On the other hand, from trigonometric identity, one can rewrite \(\cos (\tau _{0,k}+\psi )\) as

$$\begin{aligned} \begin{aligned}&\cos (\tau _{0,k}+\psi )=\\&\cos (\tau _{0,k-1}+\psi +T_u)=\\&\cos (\tau _{0,k-1}+\psi )\cos T_u-\sin (\tau _{0,k-1}+\psi )\sin T_u, \end{aligned} \end{aligned}$$
(A.3)

which gives

$$\begin{aligned} \begin{aligned}&[\cos (\tau _{0,k-1}+\psi )\cos T_u-\cos (\tau _{0,k}+\psi )]^2=\\&\sin ^2(\tau _{0,k-1}+\psi )\sin ^2 T_u=\\&[1-\cos ^2(\tau _{0,k-1}+\psi )](1-\cos ^2 T_u). \end{aligned} \end{aligned}$$
(A.4)

Applying the relationships in Eqs. (24a) and  (24b) leads to

$$\begin{aligned} \frac{N_{k-1}^2}{(1+r)^2 M^2}(a^2+b^2-2ab\cos T_u)=1-\cos ^2T_u,\nonumber \\ \end{aligned}$$
(A.5)

which is Eq. (26a).

Appendix B: Entries in \(T_1\) and \(T_2\)

The entries \(\frac{\partial \tau _{0,k}}{\partial \tau _{0,k-1}}\), \(\frac{\partial \tau _{0,k}}{\partial N_{k-1}}\), \(\frac{\partial N_{k}}{\partial \tau _{0,k-1}}\), and \(\frac{\partial N_{k}}{\partial N_{k-1}}\) in matrix \(T_1\) are obtained by taking partial derivatives with respect to \(\tau _{0,k-1}\) and \(N_{k-1}\) for both sides of Eqs. (21a) and  (21b), and are calculated as,

$$\begin{aligned} \begin{aligned}&\frac{\partial \tau _{0,k}}{\partial \tau _{0,k-1}} = \frac{M\cos (\tau _{0,k-1}+\psi ) + N_{k-1}e^{-\beta T_u}}{M\cos (\tau _{0,k} + \psi )+N_{k-1}e^{-\beta T_u}}\\&\frac{\partial \tau _{0,k}}{\partial N_{k-1}} = \frac{e^{-\beta T_u}-1}{\beta M\cos (\tau _{0,k} + \psi )+\beta N_{k-1}e^{-\beta T_u}}\\&\frac{\partial N_{k}}{\partial \tau _{0,k-1}} = - r \beta N_{k-1} e^{-\beta T_u} +\\&[(1+r)M\sin (\tau _{0,k} + \psi )+r \beta N_{k-1}e^{-\beta T_u}]\frac{\partial \tau _{0,k}}{\partial \tau _{0,k-1}}\\&\frac{\partial N_{k}}{\partial N_{k-1}} = - r e^{-\beta T_u} +\\&[(1+r)M\sin (\tau _{0,k} + \psi )+r \beta N_{k-1}e^{-\beta T_u}]\frac{\partial \tau _{0,k}}{\partial N_{k-1}}\\ \end{aligned} \end{aligned}$$
(B.1)

Similar calculations for Eqs. (22a) and  (22b) gives,

$$\begin{aligned} \begin{aligned}&\frac{\partial \tau _{0,k+1}}{\partial \tau _{0,k}} = \frac{M\cos (\tau _{0,k}+\psi ) + N_{k}e^{-\beta T_d}}{M\cos (\tau _{0,k+1} + \psi )+N_{k}e^{-\beta T_d}}\\&\frac{\partial \tau _{0,k+1}}{\partial N_{k}} = \frac{e^{-\beta T_d}-1}{\beta M\cos (\tau _{0,k+1} + \psi )+\beta N_{k}e^{-\beta T_d}}\\&\frac{\partial N_{k+1}}{\partial \tau _{0,k}} = - r \beta N_{k} e^{-\beta T_d} +\\&[(1+r)M\sin (\tau _{0,k+1} + \psi )+r \beta N_{k}e^{-\beta T_d}]\frac{\partial \tau _{0,k+1}}{\partial \tau _{0,k}}\\&\frac{\partial N_{k+1}}{\partial N_{k}} = - r e^{-\beta T_d} +\\&[(1+r)M\sin (\tau _{0,k+1} + \psi )+r \beta N_{k}e^{-\beta T_d}]\frac{\partial \tau _{0,k+1}}{\partial N_{k}}\\ \end{aligned} \end{aligned}$$
(B.2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, A., Kong, X. et al. Dynamics of an electromagnetic vibro-impact nonlinear energy sink, applications in energy harvesting and vibration absorption. Nonlinear Dyn 108, 1027–1043 (2022). https://doi.org/10.1007/s11071-022-07253-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07253-5

Keywords

Navigation