Skip to main content

Advertisement

Log in

Design criteria of bistable nonlinear energy sink in steady-state dynamics of beams and plates

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A bistable nonlinear energy sink (BNES) conceived for the passive vibration control of beam and plate structures under harmonic excitation is investigated. By applying an Incremental Harmonic Balance (IHB) method together with an adjusted arc-length continuation technique, the frequency and amplitude responses are obtained, and their respective trends are discussed in detail from three aspects. The simplest single-mode dynamics is first considered with a special focus on the coupled effect of the cubic nonlinear stiffness and the negative linear stiffness, where an analytical treatment using complex-averaging method is also applied to obtain the slow invariant manifold for understanding the underlying dynamics. Then the multi-mode dynamics of the beam are discussed in variation of each parameter. As a result, a simple step-by-step design rule for the BNES is summarized. Finally, the obtained results and design criteria of the BNES in the beam case are extended to a 2D plate, realizing a broadband control for multi-mode plate vibration. It is found that compared to a traditional cubic one, a BNES can have a better performance both on the frequency and amplitude point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Frahm, H.: Device for damping vibrations of bodies., April 18 1911. US Patent 989,958

  2. Den Hartog, J.P.: Mechanical vibrations. McGraw-Hill, New-York (1934)

    MATH  Google Scholar 

  3. Krenk, S., Høgsberg, J.: Tuned mass absorber on a flexible structure. J. Sound Vib. 333(6), 1577–1595 (2014)

    Article  Google Scholar 

  4. Stanikzai, M.H., Elias, S., Matsagar, V.A., Jain, A.K.: Seismic response control of base-isolated buildings using tuned mass damper. Australian J. Struct. Eng. 21(1), 310–321 (2019)

    Article  Google Scholar 

  5. Lee, C., Chen, Y., Chung, L., Wang, Y.: Optimal design theories and applications of tuned mass dampers. Eng. struct. 28(1), 43–53 (2006)

    Article  Google Scholar 

  6. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G., Nucera, F., Tsakirtzis, S., Panagopoulos, P.N.: Passive non-linear targeted energy transfer and its applications to vibration absorption: a review. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. 222(2), 77–134 (2008)

    Google Scholar 

  7. Zang, J., Chen, L.: Complex dynamics of a harmonically excited structure coupled with a nonlinear energy sink. Acta Mechanica Sinica 33(4), 801–822 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aubry, S., Kopidakis, G., Morgante, A.M., Tsironis, G.P.: Analytic conditions for targeted energy transfer between nonlinear oscillators or discrete breathers. Phys. B: Condens. Mat. 296(1–3), 222–236 (2001)

    Article  Google Scholar 

  9. Kopidakis, G., Aubry, S., Tsironis, G.P.: Targeted energy transfer through discrete breathers in nonlinear systems. Phys. Rev. Lett. 87(16), 165501 (2001)

    Article  Google Scholar 

  10. Gendelman, O.V.: Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators. Nonlinear dyn. 25(1–3), 237–253 (2001)

    Article  MATH  Google Scholar 

  11. Gendelman, O.V., Manevitch, L.I., Vakakis, A.F., M’closkey, R.: Energy pumping in nonlinear mechanical oscillators: Part i–dynamics of the underlying hamiltonian systems. J. Appl. Mech. 68(1), 34–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Vakakis, A.F., Gendelman, O.V.: Energy pumping in nonlinear mechanical oscillators: part ii–resonance capture. J. Appl. Mech. 68(1), 42–48 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Vakakis, A.F.: Inducing passive nonlinear energy sinks in vibrating systems. J. Vib. Acoust. 123(3), 324–332 (2001)

    Article  Google Scholar 

  14. Lin, D.C., Oguamanam, D.C.D.: Targeted energy transfer efficiency in a low-dimensional mechanical system with an essentially nonlinear attachment. Nonlinear Dyn. 82(1–2), 971–986 (2015)

    Article  MathSciNet  Google Scholar 

  15. Lu, X., Liu, Z., Lu, Z.: Optimization design and experimental verification of track nonlinear energy sink for vibration control under seismic excitation. Struct. Control and Health Monitoring 24(12), e2033 (2017)

    Article  MathSciNet  Google Scholar 

  16. AL-Shudeifat, M.A., Wierschem, N.E., Bergman, L.A., Vakakis, A.F.: Numerical and experimental investigations of a rotating nonlinear energy sink. Meccanica 52(4–5), 763–779 (2017)

    Article  Google Scholar 

  17. Hsu, Y., Ferguson, N.S., Brennan, M.J.: The experimental performance of a nonlinear dynamic vibration absorber. In: Topics in Nonlinear Dynamics, Vol. 1, pp. 247–257. Springer (2013)

  18. Georgiades, F., Vakakis, A.F.: Dynamics of a linear beam with an attached local nonlinear energy sink. Commun. Nonlinear Sci. Num. Simul. 12(5), 643–651 (2007)

    Article  MATH  Google Scholar 

  19. Parseh, M., Dardel, M., Ghasemi, M.H.: Performance comparison of nonlinear energy sink and linear tuned mass damper in steady-state dynamics of a linear beam. Nonlinear Dyn. 81(4), 1981–2002 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Taleshi, M., Dardel, M., Pashaie, M.H.: Passive targeted energy transfer in the steady state dynamics of a nonlinear plate with nonlinear absorber. Chaos, Solitons & Fractals 92, 56–72 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Feudo, S.L., Touzé, C., Boisson, J., Cumunel, G.: Nonlinear magnetic vibration absorber for passive control of a multi-storey structure. J. Sound Vib. 438, 33–53 (2019)

    Article  Google Scholar 

  22. Yang, K., Zhang, Y., Ding, H., Yang, T., Li, Y., Chen, L.: Nonlinear energy sink for whole-spacecraft vibration reduction. Journal of Vibration and Acoustics 139(2) (2017)

  23. Bichiou, Y., Hajj, M.R., Nayfeh, A.H.: Effectiveness of a nonlinear energy sink in the control of an aeroelastic system. Nonlinear Dyn. 86(4), 2161–2177 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, C., Jing, X.: Vibration energy harvesting with a nonlinear structure. Nonlinear dyn. 84(4), 2079–2098 (2016)

    Article  MathSciNet  Google Scholar 

  25. Darabi, A., Leamy, M.J.: Clearance-type nonlinear energy sinks for enhancing performance in electroacoustic wave energy harvesting. Nonlinear Dyn. 87(4), 2127–2146 (2017)

    Article  Google Scholar 

  26. Pennisi, G., Mann, B.P., Naclerio, N., Stephan, C., Michon, G.: Design and experimental study of a nonlinear energy sink coupled to an electromagnetic energy harvester. J. Sound Vib. 437, 340–357 (2018)

    Article  Google Scholar 

  27. Xiong, L., Tang, L., Liu, K., Mace, B.R.: Broadband piezoelectric vibration energy harvesting using a nonlinear energy sink. J. Phys. D Appl. Phys. 51(18), 185502 (2018)

    Article  Google Scholar 

  28. McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Experimental study of non-linear energy pumping occurring at a single fast frequency. Int. J. Non-Linear Mech. 40(6), 891–899 (2005)

    Article  MATH  Google Scholar 

  29. Kerschen, G., McFarland, D.M., Kowtko, J.J., Lee, Y.S., Bergman, L.A., Vakakis, A.F.: Experimental demonstration of transient resonance capture in a system of two coupled oscillators with essential stiffness nonlinearity. J. Sound Vib. 299(4–5), 822–838 (2007)

    Article  Google Scholar 

  30. Gendelman, O.V.: Targeted energy transfer in systems with non-polynomial nonlinearity. J. Sound Vib. 315(3), 732–745 (2008)

    Article  Google Scholar 

  31. Lamarque, C., Gendelman, O.V., Savadkoohi, A.T., Etcheverria, E.: Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink. Acta mech. 221(1–2), 175 (2011)

    Article  MATH  Google Scholar 

  32. Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A., Kerschen, G.: Targeted energy transfers in vibro-impact oscillators for seismic mitigation. Nonlinear Dyn. 50(3), 651–677 (2007)

    Article  MATH  Google Scholar 

  33. Li, T., Seguy, S., Berlioz, A.: On the dynamics around targeted energy transfer for vibro-impact nonlinear energy sink. Nonlinear Dyn. 87(3), 1453–1466 (2017)

    Article  Google Scholar 

  34. Al-Shudeifat, M.A., Wierschem, N., Quinn, D.D., Vakakis, A.F., Bergman, L.A., Spencer Jr., B.F.: Numerical and experimental investigation of a highly effective single-sided vibro-impact non-linear energy sink for shock mitigation. Int. j. non-linear mech. 52, 96–109 (2013)

    Article  Google Scholar 

  35. Gendelman, O.V., Sigalov, G., Manevitch, L.I., Mane, M., Vakakis, A.F., Bergman, L.A.: Dynamics of an eccentric rotational nonlinear energy sink. Journal of applied mechanics 79(1) (2012)

  36. Sigalov, G., Gendelman, O.V., Al-Shudeifat, M.A., Manevitch, L.I., Vakakis, A.F., Bergman, L.A.: Resonance captures and targeted energy transfers in an inertially-coupled rotational nonlinear energy sink. Nonlinear dyn. 69(4), 1693–1704 (2012)

    Article  MathSciNet  Google Scholar 

  37. Bellet, R., Cochelin, B., Herzog, P., Mattei, P.O.: Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber. J. Sound Vib. 329(14), 2768–2791 (2010)

    Article  Google Scholar 

  38. AL-Shudeifat, M.A.: Asymmetric magnet-based nonlinear energy sink. Journal of Computational and Nonlinear Dynamics 10(1) (2015)

  39. Benacchio, S., Malher, A., Boisson, J., Touzé, C.: Design of a magnetic vibration absorber with tunable stiffnesses. Nonlinear Dyn. 85(2), 893–911 (2016)

    Article  MathSciNet  Google Scholar 

  40. Manevitch, L.I., Sigalov, G., Romeo, F., Bergman, L.A., Vakakis, A.F.: Dynamics of a linear oscillator coupled to a bistable light attachment: analytical study. J. Appl. Mech. 81(4) (2014)

  41. Romeo, F., Sigalov, G., Bergman, L.A., Vakakis, A.F.: Dynamics of a linear oscillator coupled to a bistable light attachment: numerical study. Journal of Computational and Nonlinear Dynamics 10(1), (2015)

  42. Habib, G., Romeo, F.: The tuned bistable nonlinear energy sink. Nonlinear Dyn. 89(1), 179–196 (2017)

    Article  Google Scholar 

  43. Fang, X., Wen, J., Yin, J., Yu, D.: Highly efficient continuous bistable nonlinear energy sink composed of a cantilever beam with partial constrained layer damping. Nonlinear Dyn. 87(4), 2677–2695 (2017)

    Article  Google Scholar 

  44. Mattei, P.O., Ponçot, R., Pachebat, M., Côte, R.: Nonlinear targeted energy transfer of two coupled cantilever beams coupled to a bistable light attachment. J. Sound Vib. 373, 29–51 (2016)

    Article  Google Scholar 

  45. Qiu, D., Li, T., Seguy, S., Paredes, M.: Efficient targeted energy transfer of bistable nonlinear energy sink: application to optimal design. Nonlinear Dyn. 92(2), 443–461 (2018)

    Article  Google Scholar 

  46. Parseh, M., Dardel, M., Ghasemi, M.H.: Investigating the robustness of nonlinear energy sink in steady state dynamics of linear beams with different boundary conditions. Commun. Nonlinear Sci. Num. Simul. 29(1–3), 50–71 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kani, M., Khadem, S.E., Pashaei, M.H., Dardel, M.: Vibration control of a nonlinear beam with a nonlinear energy sink. Nonlinear Dyn. 83(1–2), 1–22 (2016)

    Article  MathSciNet  Google Scholar 

  48. Zhang, Y., Yuan, B., Fang, B., Chen, L.: Reducing thermal shock-induced vibration of an axially moving beam via a nonlinear energy sink. Nonlinear Dyn. 87(2), 1159–1167 (2017)

    Article  Google Scholar 

  49. Xiong, H., Kong, X., Li, H., Yang, Z.: Vibration analysis of nonlinear systems with the bilinear hysteretic oscillator by using incremental harmonic balance method. Commun. Nonlinear Sci. Num. Simul. 42, 437–450 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Shen, Y., Wen, S., Li, X., Yang, S., Xing, H.: Dynamical analysis of fractional-order nonlinear oscillator by incremental harmonic balance method. Nonlinear Dyn. 85(3), 1457–1467 (2016)

    Article  MathSciNet  Google Scholar 

  51. Zhou, S., Song, G., Li, Y., Huang, Z., Ren, Z.: Dynamic and steady analysis of a 2-dof vehicle system by modified incremental harmonic balance method. Nonlinear Dyn. 98(1), 75–94 (2019)

    Article  MATH  Google Scholar 

  52. Kerschen, G., Peeters, M., Golinval, J., Vakakis, A.F.: Nonlinear normal modes, part i: A useful framework for the structural dynamicist. Mechan. syst. signal process. 23(1), 170–194 (2009)

    Article  Google Scholar 

  53. Peeters, M., Viguié, R., Sérandour, G., Kerschen, G.J.C.: Nonlinear normal modes, part ii: Toward a practical computation using numerical continuation techniques. Mech. syst. signal process. 23(1), 195–216 (2009)

    Article  Google Scholar 

  54. Dankowicz, H., Schilder, F.: Recipes for continuation, vol. 11. SIAM, (2013)

  55. Shaw, S.W.: An invariant manifold approach to nonlinear normal modes of oscillation. J. Nonlinear Sci. 4(1), 419–448 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  56. Jain, S., Breunung, T., Haller, G.: Fast computation of steady-state response for nonlinear vibrations of high-degree-of-freedom systems. arXiv preprint arXiv:1810.10103 (2018)

  57. Huang, J.L., Su, R.K.L., Chen, S.H.: Precise hsu’s method for analyzing the stability of periodic solutions of multi-degrees-of-freedom systems with cubic nonlinearity. Comp. struct. 87(23–24), 1624–1630 (2009)

    Article  Google Scholar 

  58. Gendelman, O.V., Starosvetsky, Y., Feldman, M.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink i: description of response regimes. Nonlinear Dyn. 51(1–2), 31–46 (2008)

    MATH  Google Scholar 

  59. Starosvetsky, Y., Gendelman, O.V.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink. ii: Optimization of a nonlinear vibration absorber. Nonlinear Dyn 51(1–2), 47–57 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiqin Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Matrices in Eq. (11)

The matrices in Eq. (11) are calculated as

$$\begin{aligned} \begin{aligned}&{\mathbf {N}} = {\left[ {\begin{array}{*{20}{c}} {{\mathbf {N}}_1^T,\;{\mathbf {N}}_2^T,\; \cdots ,\;{\mathbf {N}}_{{N_m}}^T} \end{array}} \right] ^T}, \\&{{\mathbf {N}}_k} = \left[ {{a_0},{a_{k1}},{a_{k2}} \cdots ,{a_{kn}},{b_{k1}},{b_{k2}}, \cdots {b_{kn}}} \right] , \\&{{\mathbf {K}}_{mc}} = \omega _0^2{\mathbf {M}} + {\omega _0}{\mathbf {C}} + {\mathbf {K}} + 3{{\mathbf {K}}_{n0}}, \\&{\mathbf {R}} = {\mathbf {F}} - \left( {\omega _0^2{\mathbf {M}} + {\omega _0}{{\mathbf {C}}_{n0}} + {\mathbf {K}} + {{\mathbf {K}}_{n0}}} \right) {\mathbf {N}}, \\&{{\mathbf {R}}_{mc}} = - \left( {2{\omega _0}{\mathbf {M}} + {\mathbf {C}}} \right) {\mathbf {N}}, \\&{\mathbf {M}} = \int _0^{2\pi } {{{\varvec{\Lambda }}^T}{{\bar{\mathbf {M}}\ddot{{\varLambda }} }}} d\tau , {\mathbf {K}} = \int _0^{2\pi } {{{\varvec{\Lambda }}^T}{{\bar{\mathbf {K}}{\varLambda } }}} d\tau , \\&{{\mathbf {K}}_{n0}} = \int _0^{2\pi } {{{\varvec{\Lambda }}^T}{{{{\bar{\mathbf {K}}}}}_{n0}}{\varvec{\Lambda }}} d\tau , {\mathbf {C}} = \int _0^{2\pi } {{{\varvec{\Lambda }}^T}{{\bar{\mathbf {C}}{\dot{{\varLambda }}} }}} d\tau , \\&{{\mathbf {R}}_f} = \int _0^{2\pi } {{{\varvec{\Lambda }}^T}\cos \tau } d\tau , {\mathbf {F}} = \int _0^{2\pi } {{{\varvec{\Lambda }}^T}{{{{\bar{\mathbf {F}}}}}_0}\cos \tau } d\tau . \\&{\varvec{\Lambda }} = diag\left[ {{\mathbf {D}},{\mathbf {D}}, \cdots {\mathbf {D}}} \right] , \\&{\mathbf {D}} = \left( {1,\cos \tau ,\cos 2\tau , \cdots ,\sin \tau ,sin2\tau , \cdots } \right) \end{aligned} \end{aligned}$$
(A.1)

Appendix B: Stability analysis using Floquet theory

The stabilities of the periodic solutions can be analyzed by means of the Floquet theory. Let \({\mathbf{X }} = {{\mathbf{X }}_0} + {\varDelta } {\mathbf{X }}\) and consider the perturbation motion of Eq. (7) near the fixed point \({{\mathbf{X }}_0}\) yields

$$\begin{aligned} {\omega ^2}{\bar{\mathbf{M }}}{\varDelta } {{\ddot{\varvec{X}}}} + \omega {{\bar{\mathbf{C }}}}{\varDelta } {\dot{\mathbf{X }}} + \left( {{\bar{\mathbf{K }}} + 3{{{\bar{\mathbf{K }}}}_{n0}}} \right) {\varDelta } {\mathbf{X }} = 0, \end{aligned}$$
(B.2)

or equivalently,

$$\begin{aligned} {\dot{\mathbf{Y }}} = {\mathbf{Q }}\left( \tau \right) {\mathbf{Y }}, \end{aligned}$$
(B.3)

with

$$\begin{aligned}&{\mathbf{Q }}\left( \tau \right) = \left[ {\begin{array}{*{20}{c}} 0&{}{\mathbf{I }}_n\\ { - \frac{{{\bar{\mathbf{M }}}}^{ - 1}}{{{\omega ^2}}}\left( {{\bar{\mathbf{K }}} + 3{{{\bar{\mathbf{K }}}}_{n0}}} \right) }&{}{ - \frac{{{\bar{\mathbf{M }}}}^{ - 1}}{\omega }{{{\bar{\mathbf{C }}}}}} \end{array}} \right] ,\\&{\mathbf{Y }} = \left[ {\begin{array}{*{20}{c}} {{\varDelta } {\mathbf{X }}}\\ {{\varDelta } {\dot{\mathbf{X }}}} \end{array}} \right] . \end{aligned}$$

Since the solution \(\mathbf{X }_0\) is periodic with period \(T = 2\pi \), the associated matrix \({\mathbf{Q }}\left( \tau \right) \) must also have the same property, which in turn implies \({\mathbf{Q }}\left( {\tau + T} \right) = {\mathbf{Q }}\left( \tau \right) \) and \({\mathbf{Y }}\left( {\tau + T} \right) \) solves Eq. (B.3) as well. The relationship between \({\mathbf{Y }}\left( {\tau + T} \right) \) and \({\mathbf{Y }}\left( {\tau } \right) \) can be expressed as

$$\begin{aligned} {\mathbf{Y }}\left( {\tau + T} \right) = {\mathbf{P }}{\mathbf{Y }}\left( \tau \right) , \end{aligned}$$
(B.4)

where \({\mathbf{P }}\) is usually termed as the transition matrix in the literature. Many researches have been devoted to evaluate the transition matrix \({\mathbf{P }}\). In this paper a precise Hsu’s method is applied following [49, 57], in which the period T is divided equally into n intervals with time step h, such that for the kth interval \([{\tau _k},{\tau _{k + 1}}]\), \({\mathbf{Q }}\left( \tau \right) ={{\mathbf{Q }}_k}\) is assumed to be constant, then the local transition matrix \({{\mathbf{P }}_k}\) from \({\tau _k}\) to \({\tau _{k+1}}\) writes,

$$\begin{aligned} {{\mathbf{P }}_k} = {e^{h{{\mathbf{Q }}_k}}} = {\mathbf{I }} + \sum \limits _{j = 1}^n {\frac{{{{\left( {h{{\mathbf{Q }}_k}} \right) }^j}}}{{j!}}}, \end{aligned}$$
(B.5)

thus the transition matrix P can be approximated by multiplying all the local matrices \({{\mathbf{P }}_k}\) together as

$$\begin{aligned} {\mathbf{P }} = \mathop {\varPi }\limits _{i = 1}^n {{\mathbf{P }}_k}. \end{aligned}$$
(B.6)

In the framework of the Floquet theory, the stability of the periodic response is then determined by checking the eigenvalues of P. If the spectral radius of P is less than 1, then the periodic solution is asymptotic stable, otherwise, it is unstable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, A. & Kong, X. Design criteria of bistable nonlinear energy sink in steady-state dynamics of beams and plates. Nonlinear Dyn 103, 1475–1497 (2021). https://doi.org/10.1007/s11071-020-06178-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06178-1

Keywords

Navigation