Skip to main content

Advertisement

Log in

Targeted energy transfer efficiency in a low-dimensional mechanical system with an essentially nonlinear attachment

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The rate of the targeted energy transfer, or TET efficiency, is studied based on a two degrees-of-freedom mechanical system with a primary oscillator coupled to a nonlinear attachment. The wavelet transform modulus maxima technique is applied to characterize the phase relationship in the resonance capture of and its dominant frequency–energy relationship. It is shown that (a) the TET efficiency is closely related to the 1:1 resonance capture and (b) higher efficiency is generally attainable by using attachment with stronger nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xu, Y., Piston, D.W., Johnson, C.H.: A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock protein. Proc. Natl. Acad. Sci. 96, 151 (1999)

    Article  Google Scholar 

  2. Scott, A.: Nonlinear Science, Emergence and Dynamics of Coherent Structures. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  3. Kopidakis, G., Aubry, S., Tsironis, G.P.: Targeted energy transfer through discrete breathers in nonlinear systems. Phys. Rev. Lett. 87, 165501 (2001)

    Article  Google Scholar 

  4. Vakakis, A.F., Gendelman, O.G., Bergman, L.A., McFarland, D.M., Kerchen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, New York (2008)

    MATH  Google Scholar 

  5. Rosenberg, R.M.: Normal modes of nonlinear dual-mode systems. J. Appl. Mech. 27, 263 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rand, R.: Nonlinear normal modes in two degree of freedom systems. J. Appl. Mech. 38, 561 (1971)

    Article  Google Scholar 

  7. Carr, J.: Applications of Centre Manifold Theory, vol. 36. Springer, New York (1981)

    Book  MATH  Google Scholar 

  8. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. In: Applied Mathematical Science. Springer (1983)

  9. Pilipchuk, V.N.: Oscillators with a generalized power-form elastic term. J. Sound Vib. 270, 470 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pilipchuk, V.N.: Analytical study of vibrating systems with strong non-linearities by employing saw-tooth time transformations. J. Sound Vib. 192, 43 (1996)

  11. Cveticanin, L.: Pure odd-order oscillators with constant excitation. J. Sound Vib. 330, 976 (2011)

    Article  Google Scholar 

  12. Cveticanin, L.: Oscillator with fraction order restoring force. J. Sound Vib. 320, 1064 (2009)

    Article  Google Scholar 

  13. Rakaric, Z., Kovacic, I.: Approximations for motion of the oscillators with a non- negative real-power restoring force. J. Sound Vib. 330, 321 (2011)

    Article  Google Scholar 

  14. Al-Shudeifat, M.A.: Analytical formulas for the energy, velocity and displacement decays of purely nonlinear damped oscillators. J. Vib. Control 21, 6 (2015). first published in Jul 24, 2013

    Article  MathSciNet  Google Scholar 

  15. Al-Shudeifat, M.A.: Amplitudes decay in different kinds of nonlinear oscillators. J. Vib. Acoust. 137, 031012 (2015)

    Article  Google Scholar 

  16. Al-Shudeifat, M.A.: Highly efficient nonlinear energy sink. Nonlinear Dyn. 76, 1905 (2014)

  17. Muzy, J., Bacry, E., Arneodo, A.: Wavelets and multifractal formalism for singular signals: application to turbulence data. Phys. Rev. Lett. 67, 3515 (1991)

    Article  Google Scholar 

  18. Mallat, S., Hwang, W.L.: Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory 38, 617 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, Waltham (1999)

    MATH  Google Scholar 

  20. Lin, D.C., Perez Velazquez, J.L., Nenadovic, V.: Synchronous fluctuation in broad-band processes and application to the electroencephalographic brain data. Europhys. Lett. 97, 40001 (2012)

    Article  Google Scholar 

  21. Lin, D.C.: Synchrony in broadband fluctuation and the 2008 financial crisis. PLoS One 8, e77254 (2013)

    Article  Google Scholar 

  22. Tsakirtzis, S., Kerschen, G., Panagopoulos, P.N., Vakakis, A.F.: Multi-frequency Nonlinear energy transfer from linear oscillators to MDOF essentially nonlinear attachments. J. Sound Vib. 285, 483 (2005)

    Article  Google Scholar 

  23. AL-Shudeifat, M.A., Wierschem, N.E., Quinn, D.D., Vakakis, A.F., Bergman, L.A., Spencer Jr, B.F.: Numerical and experimental investigation of a highly effective single-sided vibro-impact nonlinear energy sink for shock mitigation. Int. J. Nonlinear Mech. 52, 96 (2013)

    Article  Google Scholar 

  24. Luo, J., Wierschem, N.E., Hubbard, S.A., Fahnestock, L.A., Quinn, D.D., McFarland, M., Spencer Jr, B.F., Vakakis, A.F., Bergman, L.A.: Large-scale experimental evaluation and numerical simulation of a system of nonlinear energy sinks for seismic mitigation. Eng. Struct. 77, 34 (2014)

    Article  Google Scholar 

  25. AL-Shudeifat, M.A.: Asymmetric magnet-based nonlinear energy sink. J. Comput. Nonlinear Dyn. 10, 014502 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the DRF grant of Ryerson University and the Natural Science and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, D.C., Oguamanam, D.C.D. Targeted energy transfer efficiency in a low-dimensional mechanical system with an essentially nonlinear attachment. Nonlinear Dyn 82, 971–986 (2015). https://doi.org/10.1007/s11071-015-2211-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2211-1

Keywords

Navigation