Skip to main content
Log in

An electromagnetic vibro-impact nonlinear energy sink for simultaneous vibration suppression and energy harvesting in vortex-induced vibrations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An electromagnetic vibro-impact nonlinear energy sink (EM-VINES) is proposed in the application of vortex-induced vibration, for both purpose of vibration suppression and energy harvesting. The considered system consists of a cylinder-like bluff body subject to an oncoming flow, coupled to a magnet attachment moving in coil of gap enclosure. The fluid–structure interaction is treated using the classical Van der Pol oscillator model, and the non-smooth dynamics is formulated in a measure differential complementarity problem adapted with a Moreau–Jean time integration scheme. Comprehensive analyses are then conducted concerning the targeted energy transfer mechanism, as well as the internal competition of the energy flow. A performance indicator is defined over the lock-in region, to obtain the optimal balance between vibration suppression and energy harvesting. It is found that when the system is working in a strongly modulated regime with less than 2 impacts per cycle, a fast-scale targeted energy transfer could be activated over the whole lock-in region, making the EM-VINES behave efficiently for both vibration suppression and energy harvesting in the application of vortex-induced vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data sharing was not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Bearman, P.W.: Circular cylinder wakes and vortex-induced vibrations. J. Fluids Struct. 27(5), 648–658 (2011)

    Google Scholar 

  2. Williamson, C.H.K.: Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36(1), 413–455 (2004)

    MathSciNet  Google Scholar 

  3. Gabbai, R.D., Benaroya, H.: An overview of modeling and experiments of vortex-induced vibration of circular cylinders. J. Sound Vib. 282(3), 575–616 (2005)

    Google Scholar 

  4. Chen, W., Xin, D., Xu, F., et al.: Suppression of vortex-induced vibration of a circular cylinder using suction-based flow control. J. Fluids Struct. 42, 25–39 (2013)

    Google Scholar 

  5. Wang, C., Tang, H., Duan, F., et al.: Control of wakes and vortex-induced vibrations of a single circular cylinder using synthetic jets. J. Fluids Struct. 60, 160–179 (2016)

    Google Scholar 

  6. Chen, W., Chen, G., Xu, F., et al.: Suppression of vortex-induced vibration of a circular cylinder by a passive-jet flow control. J. Wind Eng. Ind. Aerodyn. 199, 104119 (2020)

    Google Scholar 

  7. Rashidi, S., Hayatdavoodi, M., Esfahani, J.A.: Vortex shedding suppression and wake control: a review. Ocean Eng. 126, 57–80 (2016)

    Google Scholar 

  8. Jiang, X., Mcfarland, D.M., Bergman, L.A., et al.: Steady state passive nonlinear energy pumping in coupled oscillators: theroretical and experimental results. Nonlinear Dyn. 33(1), 87–102 (2003)

    Google Scholar 

  9. Malatkar, P., Nayfeh, A.H.: Steady-state dynamics of a linear structure weakly coupled to an essentially nonlinear oscillator. Nonlinear Dyn. 47(1–3), 167–179 (2007)

    Google Scholar 

  10. Taghipour, J., Dardel, M.: Steady state dynamics and robustness of a harmonically excited essentially nonlinear oscillator coupled with a two-DOF nonlinear energy sink. Mech. Syst. Signal Process. 62, 164–182 (2015)

    Google Scholar 

  11. Gendelman, O.V., Manevitch, L.I., Vakakis, A.F., et al.: Energy pumping in nonlinear mechanical oscillators: part i—dynamics of the underlying Hamiltonian systems. J. Appl. Mech. Trans. ASME 68(1), 34–41 (2001)

    MathSciNet  Google Scholar 

  12. Habib, G., Romeo, F.: The tuned bistable nonlinear energy sink. Nonlinear Dyn. 89(1), 179–196 (2017)

    Google Scholar 

  13. Li, H., Li, A., Kong, X.: Design criteria of bistable nonlinear energy sink in steady-state dynamics of beams and plates. Nonlinear Dyn. 103(2), 1475–1497 (2021)

    Google Scholar 

  14. Li, X., Liu, K., Xiong, L., et al.: Development and validation of a piecewise linear nonlinear energy sink for vibration suppression and energy harvesting. J. Sound Vib. 503, 116104 (2021)

    Google Scholar 

  15. Geng, X., Ding, H., Mao, X., et al.: Nonlinear energy sink with limited vibration amplitude. Mech. Syst. Signal Process. 156, 107625 (2021)

    Google Scholar 

  16. Gendelman, O.V.: Analytic treatment of a system with a vibro-impact nonlinear energy sink. J. Sound Vib. 331(21), 4599–4608 (2012)

    Google Scholar 

  17. Geng, X., Ding, H., Mao, X., et al.: Potential of a vibro-impact nonlinear energy sink for energy harvesting. Mech. Syst. Signal Process. 159, 107827 (2021)

    Google Scholar 

  18. Javidialesaadi, A., Wierschem, N.E.: An inerter-enhanced nonlinear energy sink. Mech. Syst. Signal Process. 129, 449–454 (2019)

    Google Scholar 

  19. Starosvetsky, Y., Gendelman, O.V.: Dynamics of a strongly nonlinear vibration absorber coupled to a harmonically excited two-degree-of freedom system. J. Sound Vib. 312(1), 234–256 (2008)

    Google Scholar 

  20. Viguié, R., Kerschen, G., Golinval, J.-C., et al.: Using passive nonlinear targeted energy transfer to stablize drill-string systems. Mech. Syst. Signal Process. 23(1), 148–169 (2009)

    Google Scholar 

  21. Gendelman, O.V., Lamarque, C.H.: Dynamics of linear oscillator coupled to strongly nonlinear attachment with multiple states of equilibrium. Chaos Solitons Fractals 24(2), 501–509 (2005)

    MathSciNet  Google Scholar 

  22. Chen, L., Zang, J.: Complex dynamics of a harmonically excited structure coupled with a nonlinear energy sink. Mech. Syst. Signal Process. 33(4), 801–822 (2017)

    MathSciNet  Google Scholar 

  23. Gendelman, O.V., Starosvetsky, Y., Feldman, M.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: description of response regimes. Nonlinear Dyn. 51(1–2), 31–46 (2008)

    Google Scholar 

  24. Starosvetsky, Y., Gendelman, O.V.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink II: optimization of a nonlinear vibration absorber. Nonlinear Dyn. 51(1–2), 47–57 (2008)

    Google Scholar 

  25. Tumkur, R.K.R., Calderer, R., Masud, A., et al.: Computational study of vortex-induced vibration of a sprung rigid circular cylinder with a strongly nonlinear internal attachment. J. Fluids Struct. 40, 214–232 (2013)

    Google Scholar 

  26. Tumkur, R.K.R., Domany, E., Gendelman, O.V., et al.: Reduced-order model for laminar vortex-induced vibration of a rigid circular cylinder with an internal nonlinear absorber. Commun. Nonlinear Sci. Numer. Simul. 18(7), 1916–1930 (2013)

    MathSciNet  Google Scholar 

  27. Mehmood, A., Nayfeh, A.H., Raj, M.R.: Effects of a non-linear energy sink (NES) on vortex-induced vibrations of a circular cylinder. Nonlinear Dyn. 77, 667–680 (2014)

    Google Scholar 

  28. Blanchard, A., Bergman, L.A., Vakakis, A.F.: Passive suppression mechanisms in laminar vortex-induced vibration of a sprung cylinder with a strongly nonlinear, dissipative oscillator. J. Appl. Mech. 84(8), 081003 (2017)

    Google Scholar 

  29. Dai, H., Abdelkefi, A., Wang, L.: Vortex-induced vibrations mitigation through a nonlinear energy sink. Commun. Nonlinear Sci. Numer. Simul. 42, 22–36 (2017)

    Google Scholar 

  30. Chirathalattu, A.T., Santhosh, B., Bose, C., et al.: Passive suppression of vortex-induced vibrations using a nonlinear energy sink-numerical and analytical perspective. Mech. Syst. Signal Process. 182, 109556 (2023)

    Google Scholar 

  31. Dai, H., Abdelkefi, A., Wang, L.: Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations. J. Intell. Mater. Syst. Struct. 25(14), 1861–1874 (2014)

    Google Scholar 

  32. Wang, J., Tang, L., Zhao, L., et al.: Equivalent circuit representation of a vortex-induced vibration-based energy harvester using a semi-empirical lumped parameter approach. Int. J. Energy Res. 44(6), 4516–4528 (2020)

    Google Scholar 

  33. Wang, J., Tang, L., Zhao, L., et al.: High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Convers. Manag. 181, 645–652 (2019)

    Google Scholar 

  34. Wang, J., Tang, L., Zhao, L., et al.: Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies. Energy 172, 1066–1078 (2017)

    Google Scholar 

  35. Naseer, R., Dai, H., Abdelkefi, A., et al.: Comparative study of piezoelectric vortex-induced vibration-based energy harvesters with multi-stability characteristics. Energies 13(1), 71 (2019)

    Google Scholar 

  36. Sun, W., Seok, J.: A novel self-tuning wind energy harvester with slidable bluff body using vortex-induced vibration. Energy Convers. Manag. 205, 112472 (2020)

    Google Scholar 

  37. Li, H., Li, A., Kong, X., et al.: Dynamics of an electromagnetic vibro-impact nonlinear energy sink, applications in energy harvesting and vibration absorption. Nonlinear Dyn. 108(2), 1027–1043 (2022)

    Google Scholar 

  38. Govardhan, R., Williamson, C.H.K.: Modes of vortex formation and frequency response of a freely vibrating cylinder. J. Fluid Mech. 420, 85–130 (2000)

    MathSciNet  Google Scholar 

  39. Lai, Z., Wang, S., Zhu, L., Zhang, G., Wang, J., Yang, K., Yurchenko, D.: A hybrid piezo-dielectric wind energy harvester for high-performance vortex-induced vibration energy harvesting. Mech. Syst. Signal Process. 150, 107212 (2021)

    Google Scholar 

  40. Violette, R., de Langre, E., Szydlowski, J.: Computation of vortex-induced vibrations of long structures using a wake oscillator model: comparison with DNS and experiments. Comput. Struct. 85(11–14), 1134–1141 (2007)

  41. Alvis, T., Abdelkefi, A.: Efficacy of vibro-impact energy harvesting absorbers on controlling dynamical systems under vortex-induced vibrations and base excitation. Ocean Eng. 272, 113816 (2023)

    Google Scholar 

  42. Georgiades, F., Vakakis, A.F.: Dynamics of a linear beam with an attached local nonlinear energy sink. Commun. Nonlinear Sci. Numer. Simul. 12(5), 643–651 (2007)

    Google Scholar 

  43. Li, T., Seguy, S., Berlioz, A.: Optimization mechanism of targeted energy transfer with vibro-impact energy sink under periodic and transient excitation. Nonlinear Dyn. 87, 2415–2433 (2017)

    Google Scholar 

  44. Qiu, D., Seguy, S., Paredes, M.: Design criteria for optimally tuned vibro-impact nonlinear energy sink. J. Sound Vib. 442, 497–513 (2019)

    Google Scholar 

  45. Theurich, T., Vakakis, A.F., Krack, M.: Predictive design of impact absorbers for mitigating resonances of flexible structures using a semi-analytical approach. J. Sound Vib. 516, 116527 (2022)

    Google Scholar 

  46. Chabrier, R., Chevallier, G., Foltête, E., et al.: Experimental investigations of a vibro-impact absorber attached to a continuous structure. Mech. Syst. Signal Process. 180, 109382 (2022)

    Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (No.12132010, No.12202304), and S &T Program of Hebei (225676162GH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiqin Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, S., Ding, Q. et al. An electromagnetic vibro-impact nonlinear energy sink for simultaneous vibration suppression and energy harvesting in vortex-induced vibrations. Nonlinear Dyn 112, 5919–5936 (2024). https://doi.org/10.1007/s11071-024-09380-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09380-7

Keywords

Navigation