Skip to main content

Advertisement

Log in

Experimental investigation and analytical description of a vibro-impact NES coupled to a single-degree-of-freedom linear oscillator harmonically forced

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the dynamics of a system composed of a harmonically forced single-degree-of-freedom linear oscillator coupled to a vibro-impact nonlinear energy sink (VI-NES) is experimentally investigated. The mass ratio between the VI-NES and the primary system is about \(1\%\). Depending on the external force’s amplitude and frequency, either a strongly modulated response (SMR) or a constant amplitude response (CAR) is observed. In both cases, an irreversible transfer of energy occurs from the linear oscillator toward the VI-NES: process known in the literature as passive targeted energy transfer. Furthermore, the problem is analytically studied by using the method of multiple scales. The obtained slow invariant manifold shows the existence of a stable and of an unstable branch of solutions, as well as of an energy threshold (a saddle-node bifurcation) for the solutions to appear. Subsequently, the fixed points of the problem are calculated. When a stable fixed point is reached, the system is naturally drawn to it and a CAR is established, whereas when no stable point is attained, the system exhibits a SMR regime. Finally, a good correlation between the experimental and the analytical results is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. The symbol \(:=\) meaning equals by definition

References

  1. Gendelman, O.: Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators. Nonlinear Dyn. 25, 237–253 (2001)

    Article  MATH  Google Scholar 

  2. Vakakis, A.F., Gendelman, O.V., Manevitch, L.I., McCloskey, R.: Energy pumping in nonlinear mechanical oscillators part ii resonance capture. J. Appl. Mech. Trans. ASME 68, 42–48 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Vakakis, A., Gendelman, O., Manevitch, L., McCloskey, R.: Energy pumping in nonlinear mechanical oscillators i: dynamics of the underlying hamiltonian system. J. Appl. Mech.Trans. ASME 68, 34–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Manevitch, L., Gourdon, E., Lamarque, C.: Parameters optimization for energy pumping in strongly nonhomogeneous 2 dof system. Chaos Solitons Fractals 31(4), 900–911 (2007)

    Article  Google Scholar 

  5. Kerschen, G., Lee, Y.S., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Irreversible passive energy transfer in coupled oscillators with essential nonlinearity. SIAM J. Appl. Math. 66(2), 648–679 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. McFarland, D., Bergman, L., Vakakis, A.: Experimental study of non-linear energy pumping occurring at a single fast frequency experimental study of non-linear energy pumping occurring at a single fast frequency. Int. J. Non-Linear Mech. 40(6), 891–899 (2005)

    Article  MATH  Google Scholar 

  7. Gourdon, E., Alexander, N., Taylor, C., Lamarque, C., Pernot, S.: Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results. J. Sound Vib. 300(3), 522–551 (2007)

    Article  Google Scholar 

  8. Kerschen, G., Kowtko, J., McFarland, D., Bergman, L., Vakakis, A.: Theoretical and experimental study of multimodal targeted energy transfer in a system of coupled oscillators. Nonlinear Dyn. 47(1), 285–309 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Starosvetsky, Y., Gendelman, O.: Strongly modulated response in forced 2 dof oscillatory system with essential mass and potential asymmetry. Physica D 237(13), 1719–1733 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gourc, E., Michon, G., Seguy, S., Berlioz, A.: Experimental investigation and design optimization of targeted energy transfer under periodic forcing. J. Vib. Acoust. 136, 021021 (2014)

    Article  Google Scholar 

  11. Gendelman, O., Bar, T.: Bifurcations of self-excitation regimes in a van der pol oscillator with a nonlinear energy sink. Physica D 239(3), 220–229 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lee, Y.S., Vakakis, A.F., Bergman, L., McFarland, D., Kerschen, G.: Suppressing aeroelastic instability using broadband passive targeted energy transfers, part 1: Theory. AIAA J. 45(3), 693–711 (2007)

    Article  Google Scholar 

  13. Lee, Y.S., Kerschen, G., McFarland, D., Hill, W.J., Nichkawde, C., Strganac, T., Bergman, L., Vakakis, A.F.: Suppressing aeroelastic instability using broadband passive targeted energy transfers, part 2: Experiments. AIAA J. 45(10), 2391–2400 (2007)

    Article  Google Scholar 

  14. Gendelman, O., Vakakis, A., Bergman, L., McFarland, D.: Asymptotic analysis of passive nonlinear suppression of aeroelastic instabilities of a rigid wing in subsonic flow. SIAM J. Appl. Math. 70(5), 1655–1677 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Vaurigaud, B., Manevitch, L., Lamarque, C.: Passive control of aeroelastic instability in a long span bridge model prone to coupled flutter using targeted energy transfer. J. Sound Vib. 330(11), 2580–2595 (2011)

    Article  Google Scholar 

  16. Gendelman, O.: Targeted energy transfer in systems with non-polynomial nonlinearity. J. Sound Vib. 315, 732–745 (2008)

    Article  Google Scholar 

  17. Gendelman, O., Lamarque, C.: Dynamics of linear oscillator coupled to strongly nonlinear attachment with multiple states of equilibrium. Chaos Solitons Fractals 24, 501–509 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Georgiadis, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Shock isolation through passive energy pumping caused by non-smooth nonlinearities. Int. J. Bifurc. Chaos 15, 1–13 (2005)

    Article  Google Scholar 

  19. Karayannis, I., Vakakis, A.F., Georgiadis, F.: Vibro-impact attachments as shock absorbers. Proc. Inst. Mech. Eng. J. Mech. Eng. Sci. 222(222), 1899–1908 (2008)

    Article  Google Scholar 

  20. Lee, Y.S., Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Periodic orbits, damped transitions and targeted energy transfers in oscillators with vibro-impact attachments. Physica D 238, 1868–1896 (2009)

    Article  MATH  Google Scholar 

  21. Nucera, F., Lo Iacono, F., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: Part ii. experimental results. J. Sound Vib. 313, 57–76 (2008)

    Article  Google Scholar 

  22. Gendelman, O.: Analytic treatment of a system with a vibro-impact nonlinear energy sink. J. Sound Vib. 331, 4599–4608 (2012)

    Article  Google Scholar 

  23. Gendelman, O.V., Alloni, A.: Dynamics of forced system with vibro-impact energy sink. J. Sound Vib. 358, 301–314 (2015)

  24. Gourc, E., Michon, G., Seguy, S., Berlioz, A.: Theoretical and experimental study of an harmonically forced vibro-impact nonlinear energy sink. J. Vib. Acoust. 137, 031008 (2014)

  25. Nayfeh, A.H.: Perturbation Methods. Wiley, New York (2008)

  26. Li, G.X., Rand, R.H., Moon, F.C.: Bifurcations and chaos in a forced zero-stiffness impact oscillator. J. Nonlinear Mech. 25(4), 417–432 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Pennisi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pennisi, G., Stephan, C., Gourc, E. et al. Experimental investigation and analytical description of a vibro-impact NES coupled to a single-degree-of-freedom linear oscillator harmonically forced. Nonlinear Dyn 88, 1769–1784 (2017). https://doi.org/10.1007/s11071-017-3344-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3344-1

Keywords

Navigation