Skip to main content

Advertisement

Log in

Reciprocal Control of Thyroid Binding and the Pipecolate Pathway in the Brain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

An Erratum to this article was published on 16 March 2017

Abstract

Thyroid hormones have long been known to play an essential role in brain growth and development, with cytoplasmic thyroid hormone binding proteins (THBPs) playing a critical role in thyroid hormone bioavailability. A major mammalian THBP is μ-crystallin (CRYM), which was originally characterized by its ability to strongly bind thyroid hormones in an NADPH-dependent fashion. However, in 2011 it was discovered that CRYM is also an enzyme, namely ketimine reductase (KR), which catalyzes the NAD(P)H-dependent reduction of –C=N– (imine) double bonds of a number of cyclic ketimine substrates including sulfur-containing cyclic ketimines. The enzyme activity was also shown to be potently inhibited by thyroid hormones, thus suggesting a novel reciprocal relationship between enzyme catalysis and thyroid hormone bioavailability. KR is involved in a number of amino acid metabolic pathways. However, the best documented biological function of KR is its role as a ∆1-piperideine-2-carboxylate (P2C) reductase in the pipecolate pathway of lysine metabolism. The pipecolate pathway is the main l-lysine degradation pathway in the adult brain, whereas the saccharopine pathway predominates in extracerebral tissues and in infant brain, suggesting that KR has evolved to perform specific and important roles in neural development and function. The potent regulation of KR activity by thyroid hormones adds further weight to this suggestion. KR is also involved in l-ornithine/l-glutamate/l-proline metabolism as well as sulfur-containing amino acid metabolism. This review describes the pipecolate pathway and recent discoveries related to mammalian KR function, which have important implications in normal and pathological brain functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Modified from [75]

Fig. 3
Fig. 4

Reproduced from [75] with permission

Fig. 5

From [75] with permission

Fig. 6

From [75] with permission

Fig. 7

From [75] with permission

Fig. 8

Similar content being viewed by others

Abbreviations

AAD:

α-Aminoadipate

AADT:

α-Aminoadipate transaminase (aminotransferase)

AAS:

α-Aminoadipate δ-semialdehyde

AASDH:

α-Aminoadipate δ-semialdehyde dehydrogenase

AECK:

Aminoethylcysteine ketimine

α-KG:

α-Ketoglutarate

AKA:

α-Ketoadipate

ALDH:

Aldehyde dehydrogenase

ALS:

Amyotrophic lateral sclerosis

CTBP:

Cytosolic thyroid hormone binding protein

CRYM:

μ-Crystallin

CysK:

Cystathionine ketimine

DAAO:

d-Amino acid oxidase

DTT:

Dithiothreitol

GAD:

Glutamate decarboxylase

GTL:

Glutamine transaminase L

KAC:

α-Keto-ε-aminocaproate

KATIII:

Kynurenine aminotransferase III

KR:

Ketimine reductase

Kyn:

l-Kynurenine

KynA:

Kynurenate

LK:

Lanthionine ketimine

IL4I1:

Interleukin-4–induced protein 1

LAAO:

l-Amino acid oxidase

LKR/SDH:

Lysine-α-ketoglutarate reductase/saccharopine dehydrogenase

P2C:

1-Piperideine-2-carboxylate

P6C:

1-Piperideine-6-carboxylate

PLP:

Pyridoxal 5′-phosphate

POX:

Pipecolate oxidase

Pyr2C:

1-Pyrroline-2-carboxylate

Pyr5C:

1-Pyrroline-5-carboxylate

rT3:

3,3′,5′-l-Triodothyronine; reverse T3

T2:

3,5-l-Diiodothyronine

3,3′-T2:

3,3′-l-Diiodothyronine

T3 :

3,5,3′-l-Triiodothyronine

T4 :

Thyroxine

T2C:

2-Thiazoline-2-carboxylate

THBP:

Thyroid binding protein

References

  1. Weissman N, Schoenheimer RJ (1941) The relative stability of l(+)-lysine in rats studied with deuterium and heavy nitrogen. J Biol Chem 140:779–795

    CAS  Google Scholar 

  2. Higashino K, Tsukada K, Lieberman I (1965) Saccharopine, a product of lysine breakdown by mammalian liver. Biochem Biophys Res Commun 20:285–290

    Article  CAS  PubMed  Google Scholar 

  3. Higashino K, Fujioka M, Aoki T, Yamamura T (1967) Metabolism of lysine in rat liver. Biochem Biophys Res Commun 29:95–100

    Article  CAS  PubMed  Google Scholar 

  4. Hutzler J, Dancis J (1968) Conversion of lysine to saccharopine by human tissues. Biochim Biophys Acta 158:62–69

    Article  CAS  PubMed  Google Scholar 

  5. Carson N, Scally B, Neill D, Carre L (1968) Saccharopinuria: a new inborn error of metabolism. Nature 218:679

    Article  CAS  PubMed  Google Scholar 

  6. Dancis J, Hutzler J, Cox RP, Woody NC (1969) Familial hyperlysinemia with lysine-ketoglutarate reductase insufficiency. J Clin Invest 48:1447–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Higashino K, Fujioka M, Yamamura Y (1971) The conversion of l-lysine to saccharopine and α-aminoadipate in mouse. Arch Biochem Biophys 142:606–614

    Article  CAS  PubMed  Google Scholar 

  8. Fellows FC, Lewis MH (1973) Lysine metabolism in mammals. Biochem J 136:329–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fellows FC, Carson NA (1974) Enzyme studies in a patient with saccharopinuria: a defect of lysine metabolism. Pediatr Res 8:42–49

    Article  CAS  PubMed  Google Scholar 

  10. Hutzler J, Dancis J (1975) Lysine-ketoglutarate reductase in human tissues. Biochim Biophys Acta 377:42–51

    Article  CAS  PubMed  Google Scholar 

  11. Markovitz PJ, Chuang DT, Cox RP (1984) Familial hyperlysinemias. Purification and characterization of the bifunctional aminoadipic semialdehyde synthase with lysine-ketoglutarate reductase and saccharopine dehydrogenase activities. J Biol Chem 259:11643–11646

    CAS  PubMed  Google Scholar 

  12. Rao VV, Pan X, Chang YF (1992) Developmental changes of l-lysine-ketoglutarate reductase in rat brain and liver. Comp Biochem Physiol B Comp Biochem 103:221–224

    Article  CAS  Google Scholar 

  13. Blemings K, Crenshaw T, Swick R, Benevenga N (1994) Lysine-α-ketoglutarate reductase and saccharopine dehydrogenase are located only in the mitochondrial matrix in rat liver. J Nutr 124:1215–1221

    CAS  PubMed  Google Scholar 

  14. Papes F, Kemper EL, Cord-Neto G, Langone F, Arruda P (1999) Lysine degradation through the saccharopine pathway in mammals: involvement of both bifunctional and monofunctional lysine-degrading enzymes in mouse. Biochem J 344:555–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sacksteder KA, Biery BJ, Morrell JC, Goodman BK, Geisbrecht BV, Cox RP, Gould SJ, Geraghty MT (2000) Identification of the α-aminoadipic semialdehyde synthase gene, which is defective in familial hyperlysinemia. Am J Hum Genet 66:1736–1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Benevenga NJ, Blemings KP (2007) Unique aspects of lysine nutrition and metabolism. J Nutr 137:1610S–1615S

    CAS  PubMed  Google Scholar 

  17. Pink DB, Gatrell SK, Elango R, Turchinsky J, Kiess AS, Blemings KP, Dixon WT, Ball RO (2011) Lysine α-ketoglutarate reductase, but not saccharopine dehydrogenase, is subject to substrate inhibition in pig liver. Nutr Res 31:544–554

    Article  CAS  PubMed  Google Scholar 

  18. Hallen A, Jamie JF, Cooper AJL (2013) Lysine metabolism in mammalian brain: an update on the importance of recent discoveries. Amino Acids 45:1249–1272

    Article  CAS  PubMed  Google Scholar 

  19. Garweg G, von Rehren D, Hintze U (1980) l-Pipecolate formation in the mammalian brain. Regional distribution of ∆1-pyrroline-2-carboxylate reductase activity. J Neurochem 35:616–621

    Article  CAS  PubMed  Google Scholar 

  20. Chang YF (1976) Pipecolic acid pathway: the major lysine metabolic route in the rat brain. Biochem Biophys Res Commun 69:174–180

    Article  CAS  PubMed  Google Scholar 

  21. Chang YF (1978) Lysine metabolism in the rat brain: the pipecolic acid-forming pathway. J Neurochem 30:347–354

    Article  CAS  PubMed  Google Scholar 

  22. Chang YF (1982) Lysine metabolism in the human and the monkey: demonstration of pipecolic acid formation in the brain and other organs. Neurochem Res 7:577–588

    Article  CAS  PubMed  Google Scholar 

  23. Chang YF, Charles AK (1995) Uptake and metabolism of ∆1-piperidine-2-carboxylic acid by synaptosomes from rat cerebral cortex. Biochim Biophys Acta 1238:29–33

    Article  PubMed  Google Scholar 

  24. Posset R, Opp S, Struys EA, Völkl A, Mohr H, Hoffmann GF, Kölker S, Sauer SW, Okun JG (2015) Understanding cerebral l-lysine metabolism: the role of l-pipecolate metabolism in Gcdh-deficient mice as a model for glutaric aciduria type I. J Inherit Metab Dis 38:265–272

    Article  CAS  PubMed  Google Scholar 

  25. Sauer SW, Opp S, Hoffmann GF, Koeller DM, Okun JG, Kölker S (2011) Therapeutic modulation of cerebral l-lysine metabolism in a mouse model for glutaric aciduria type I. Brain 134:157–1570

    Article  PubMed  Google Scholar 

  26. Nishio H, Segawa T (1983) Determination of pipecolic acid in rat brain areas by high-performance liquid chromatography of dansyl derivatives with fluorimetric detection. Anal Biochem 135:312–317

    Article  CAS  PubMed  Google Scholar 

  27. Kim JS, Giacobini E (1984) Quantitative determination and regional distribution of pipecolic acid in rodent brain. Neurochem Res 9:1559–1569

    Article  CAS  PubMed  Google Scholar 

  28. Kim JS, Giacobini E (1985) Pipecolic acid levels and transport in developing mouse brain. Brain Res 354:181–186

    Article  CAS  PubMed  Google Scholar 

  29. Nishio H, Yamada Y, Giacobini E, Segawa T (1985) Distribution of pipecolic acid and proline in the developing rat brain and peripheral organs. Int J Dev Neurosci 3:379–384

    Article  CAS  PubMed  Google Scholar 

  30. Inoue H, Sakata Y, Nishio H, Tokumo K, Kojima E, Date Y, Tamura Y, Tsuruta Y (2011) A simple and highly sensitive HPLC method with fluorescent detection for determination of pipecolic acid in mouse brain areas. Biol Pharm Bull 34:287–289

    Article  CAS  PubMed  Google Scholar 

  31. Kasé Y, Kataoka M, Miyata T, Okano Y (1973) Pipecolic acid in the dog brain. Life Sci 13:867–873

    Article  PubMed  Google Scholar 

  32. Challa VR, Geisinger KR, Burton BK (1983) Pathologic alterations in the brain and liver in hyperpipecolic acidemia. J Neuropathol Exp Neurol 42:627–638

    Article  CAS  PubMed  Google Scholar 

  33. Zellweger H, Maertens P, Superneau D, Wertelecki W (1988) History of the cerebrohepatorenal syndrome of Zellweger and other peroxisomal disorders. South Med J 81:357–364

    Article  CAS  PubMed  Google Scholar 

  34. Al-Essa MA, Chaves-Carballo E, Ozand PT (1999) Hyperpipecolic acidemia: clinical, biochemical, and radiologic observations. Pediatr Neurol 21:826–829

    Article  CAS  PubMed  Google Scholar 

  35. Burton BK, Reed SP, Remy WT (1981) Hyperpipecolic acidemia: clinical and biochemical observations in two male siblings. J Pediatr 99:729–734

    Article  CAS  PubMed  Google Scholar 

  36. Walsh C (1989) Enzymes in the d-alanine branch of bacterial cell wall peptidoglycan assembly. J Biol Chem 264:2393–2396

    CAS  PubMed  Google Scholar 

  37. Radzishevsky I, Sason H, Wolosker H (2013) d -serine: physiology and pathology. Curr Opin Clin Nutr Metab Care 16:72–75

    Article  CAS  PubMed  Google Scholar 

  38. Campanini B, Spyrakis F, Peracchi A, Mozzarelli A (2013) Serine racemase: a key player in neuron activity and in neuropathologies. Front Biosci (Landmark Ed) 18:1112–1128

    Article  CAS  Google Scholar 

  39. Errico F, Napolitano F, Nisticò R, Usiello A (2012) New insights on the role of free d-aspartate in the mammalian brain. Amino Acids 43:1861–1871

    Article  CAS  PubMed  Google Scholar 

  40. Palazzo E, Luongo L, Guida F, Marabese I, Romano R, Iannotta M, Rossi F, D’Aniello A, Stella L, Marmo F, Usiello A, de Bartolomeis A, Maione S, de Novellis V (2016) d-Aspartate drinking solution alleviates pain and cognitive impairment in neuropathic mice. Amino Acids. 48:1553-1567

    Article  CAS  PubMed  Google Scholar 

  41. Mothet JP, Snyder SH (2012) Brain d-amino acids: a novel class of neuromodulators. Amino Acids 43:1809–1810

    Article  CAS  PubMed  Google Scholar 

  42. Friedman M (1999) Chemistry, nutrition, and microbiology of d-amino acids. J Agric Food Chem 47:3457–3479

    Article  CAS  PubMed  Google Scholar 

  43. Huang HT, Davisson JW (1958) Distribution of lysine racemase in bacteria. J Bacteriol 76:495–498

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Schieber A, Brückner H, Rupp-Classen M, Specht W, Nowitzki-Grimm S, Classen HG (1997) Evaluation of d-amino acid levels in rat by gas chromatography-selected ion monitoring mass spectrometry: no evidence for subacute toxicity of orally fed d -proline and d-aspartic acid. J Chromatogr B Biomed Sci Appl 691:1–12

    Article  CAS  PubMed  Google Scholar 

  45. Yoshimoto S (1958) The action of d-amino acod oxidase on ε-acyllysine and lysine. Arch Biochem Biophys 75:280–289

    Article  CAS  PubMed  Google Scholar 

  46. Neims AH, Zieverink WD, Smilack JD (1966) Distribution of d-amino acid oxidase in bovine and human nervous tissues. J Neurochem 13:163–168

    Article  CAS  PubMed  Google Scholar 

  47. Goldstein DB (1966) d-amino acid oxidase in brain: distribution in several species and inhibition by pentobarbitone. J Neurochem 13:1011–1016

    Article  CAS  PubMed  Google Scholar 

  48. Ratner S, Weissman N, Schoenheimer R (1943) The metabolism of d-lysine investigated with deuterium and heavy nitrogen. J Biol Chem 147:549–556

    CAS  Google Scholar 

  49. Scannone H, Wellner D, Novogrodsky A (1964) A study of amino acid oxidase specificity, using a new sensitive assay. BioChemistry 3:1742–1745

    Article  CAS  PubMed  Google Scholar 

  50. Grove J, Henderson LM (1968) The metabolism of d- and l-lysine in the intact rat, perfused liver and liver mitochondria. Biochim Biophys Acta 165:113–120

    Article  CAS  PubMed  Google Scholar 

  51. Nishina Y, Sato K, Shiga K (1991) Isomerization of ∆1-piperideine-2-carboxylate to ∆2-piperideine-2-carboxylate on complexation with flavoprotein d-amino acid oxidase. J Biochem 109:705–710

    Article  CAS  PubMed  Google Scholar 

  52. Nitoker N, Major DT (2015) Understanding the reaction mechanism and intermediate stabilization in mammalian serine racemase using multiscale quantum–classical simulations. BioChemistry 264:516–527

    Article  CAS  Google Scholar 

  53. Marchetti M, Bruno S, Campanini B, Bettati S, Peracchi A, Mozzarelli A (2015) Regulation of human serine racemase activity and dynamics by halides, ATP and malonate. Amino Acids 47:163–1673

    Article  CAS  PubMed  Google Scholar 

  54. Toney MD (2011) Controlling reaction specificity in pyridoxal phosphate enzymes. Biochim Biophys Acta 1814:1407–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Blanchard M, Green DE, Nocito V, Ratner S (1944) l-Amino acid oxidase of animal tissue. J Biol Chem 155:421–440

    CAS  Google Scholar 

  56. Blanchard M, Green DE, Nocito-Carroll V, Ratner S (1946) l-Hydroxy acid oxidase. J Biol Chem 163:137–144

    CAS  PubMed  Google Scholar 

  57. Sun Y, Nonobe E, Kobayashi Y, Kuraishi T, Aoki F, Yamamoto K, Sakai S (2002) Characterization and expression of l-amino acid oxidase of mouse milk. J Biol Chem 277:19080–19086

    Article  CAS  PubMed  Google Scholar 

  58. Nagaoka K, Aoki F, Hayashi M, Muroi Y, Sakurai T, Itoh K, Ikawa M, Okabe M, Imakawa K, Sakai S (2009) l-Amino acid oxidase plays a crucial role in host defense in the mammary glands. FASEB J 23:2514–2520

    Article  CAS  PubMed  Google Scholar 

  59. Chavan SS, Tian W, Hsueh K, Jawaheer D, Gregersen PK, Chu CC (2002) Characterization of the human homolog of the IL-4 induced gene-1 (Fig. 1). Biochim Biophys Acta 1576:70–80

    Article  CAS  PubMed  Google Scholar 

  60. Boulland ML, Marquet J, Molinier-Frenkel V, Moller P, Guiter C, Lasoudris F, Copie-Bergman C, Baia M, Gaulard P, Leroy K, Castellano F (2007) Human IL4I1 is a secreted l-phenylalanine oxidase expressed by mature dendritic cells that inhibits T-lymphocyte proliferation. Blood 110:220–227

    Article  CAS  PubMed  Google Scholar 

  61. Wiemann S, Kolb-Kokocinski A, Poustka A (2005) Alternative pre-mRNA processing regulates cell-type specific expression of the IL4l1 and NUP62 genes. BMC Biol 3:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Murthy SN, Janardanasarma MK (1999) Identification of l-amino acid/ l-lysine alpha-amino oxidase in mouse brain. Mol Cell Biochem 197:13–23

    Article  CAS  PubMed  Google Scholar 

  63. Mason JM, Naidu MD, Barcia M, Porti D, Chavan SS, Chu CC (2004) IL-4-induced gene-1 is a leukocyte l-amino acid oxidase with an unusual acidic pH preference and lysosomal localization. J Immunol 173:4561–4567

    Article  CAS  PubMed  Google Scholar 

  64. Han Q, Robinson H, Cai T, Tagle DA, Li J (2009) Biochemical and structural properties of mouse kynurenine aminotransferase III. Mol Cell Biol 29:784–793

    Article  CAS  PubMed  Google Scholar 

  65. Meister A, Radhakrishnan AN, Buckley SD (1957) Enzymatic synthesis of l-pipecolic acid and l-proline. J Biol Chem 229:789–800

    CAS  PubMed  Google Scholar 

  66. Meister A, Buckley SD (1957) Pyridine nucleotide-dependent reduction of the α-keto acid analogue of lysine to l-pipecolic acid. Biochim Biophys Acta 23:202–203

    Article  CAS  PubMed  Google Scholar 

  67. Aspen AJ, Meister A (1962) The preparation and some properties of α-aminoadipic-δ-semialdehyde (∆1-piperideine-6-carboxylic acid). BioChemistry 1:600–605

    Article  CAS  PubMed  Google Scholar 

  68. Meister A (1962) ∆1-Piperideine-2-carboxylate and ∆1-pyrroline-2-carboxylate reductase. Methods Enzymol 5:878–882

    Article  CAS  Google Scholar 

  69. Aspen AJ, Meister A (1962) Conversion of α-aminoadipic acid to l-pipecolic acid by Aspergillus nidulans. BioChemistry 1:606–612

    Article  CAS  PubMed  Google Scholar 

  70. Valle D, Downing SJ, Phang JM (1973) Proline inhibition of pyrroline-5-carboxylate reductase: differences in enzymes obtained from animal and tissue culture sources. Biochem Biophys Res Commun 54:1418–1424

    Article  CAS  PubMed  Google Scholar 

  71. Yeh GC, Harris SC, Phang JM (1981) Pyrroline-5-carboxylate reductase in human erythrocytes. J Clin Invest 67:1042–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hu CA, Khalil S, Zhaorigetu S, Liu Z, Tyler M, Wan G, Valle D (2008) Human ∆1-pyrroline-5-carboxylate synthase: function and regulation. Amino Acids 35:665–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fichman Y, Gerdes SY, Kovács H, Szabados L, Zilberstein A, Csonka LN (2015) Evolution of proline biosynthesis: enzymology, bioinformatics, genetics, and transcriptional regulation. Biol Rev Camb Philos Soc 90:1065–1099

    Article  PubMed  Google Scholar 

  74. Watanabe S, Tozawa Y, Watanabe Y (2014) Ornithine cyclodeaminase/μ-crystallin homolog from the hyperthermophilic archaeon Thermococcus litoralis functions as a novel ∆1-pyrroline-2-carboxylate reductase involved in putative trans-3-hydroxy-l-proline metabolism. FEBS Open Bio 4:617–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hallen A, Cooper AJ, Jamie JF, Karuso P (2015) Insights into enzyme catalysis and thyroid hormone regulation of cerebral ketimine reductase/μ-crystallin under physiological conditions. Neurochem Res 40:1252–1266

    Article  CAS  PubMed  Google Scholar 

  76. Tanner JJ (2008) Structural biology of proline catabolism. Amino Acids 35:719–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hu CA, Lin WW, Obie C, Valle D (1999) Molecular enzymology of mammalian ∆1-pyrroline-5-carboxylate synthase. Alternative splice donor utilization generates isoforms with different sensitivity to ornithine inhibition. J Biol Chem 274:6754–6762

    Article  CAS  PubMed  Google Scholar 

  79. Hu CA, Khalil S, Zhaorigetu S, Liu Z, Tyler M et al (2008) Human ∆1-pyrroline-5-carboxylate synthase: function and regulation. Amino Acids 35:665–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Phang JM, Liu W, Zabirnyk O (2010) Proline metabolism and microenvironmental stress. Annu Rev Nutr 30:441–463

    Article  CAS  PubMed  Google Scholar 

  81. Sanyal N, Arentson BW, Luo M, Tanner JJ, Becker DF (2015) First evidence for substrate channeling between proline catabolic enzymes: a validation of domain fusion analysis for predicting protein–protein interactions. J Biol Chem 290:2225–2234

    Article  CAS  PubMed  Google Scholar 

  82. Pérez-Arellano I, Carmona-Alvarez F, Martínez AI, Rodríguez-Díaz J, Cervera J (2010) Pyrroline-5-carboxylate synthase and proline biosynthesis: from osmotolerance to rare metabolic disease. Protein Sci 19:372–378

    PubMed  PubMed Central  Google Scholar 

  83. Guilmatre A, Legallic S, Steel G, Willis A, Di Rosa G, Goldenberg A, Drouin-Garraud V, Guet A, Mignot C, Des Portes V, Valayannopoulos V, Van Maldergem L, Hoffman JD, Izzi C, Espil-Taris C, Orcesi S, Bonafé L, Le Galloudec E, Maurey H, Ioos C, Afenjar A, Blanchet P, Echenne B, Roubertie A, Frebourg T, Valle D, Campion D (2010) Type I hyperprolinemia: genotype/phenotype correlations. Hum Mutat 31:961–965

    Article  CAS  PubMed  Google Scholar 

  84. Cooper AJL, Jeitner TM (2016) Central role of glutamate metabolism in the maintenance of nitrogen homeostasis in normal and hyperammonemic brain. Biomolecules 6:16

    Article  PubMed Central  CAS  Google Scholar 

  85. Yoneda Y, Roberts E (1982) A new synaptosomal biosynthetic pathway of proline from ornithine and its negative feedback inhibition by proline. Brain Res 239:479–488

    Article  CAS  PubMed  Google Scholar 

  86. Coutelier M, Goizet C, Durr A, Habarou F, Morais S, Dionne-Laporte A, Tao F, Konop J, Stoll M, Charles P, Jacoupy M, Matusiak R, Alonso I, Tallaksen C, Mairey M, Kennerson M, Gaussen M, Schule R, Janin M, Morice-Picard F, Durand CM, Depienne C, Calvas P, Coutinho P, Saudubray JM, Rouleau G, Brice A, Nicholson G, Darios F, Loureiro JL, Zuchner S, Ottolenghi C, Mochel F, Stevanin G (2015) Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia. Brain 138:2191–2205

    Article  PubMed  PubMed Central  Google Scholar 

  87. Petrakis PL, Greenberg DM (1965) Studies on l-proline:NAD(P)+-oxidoreductase of hog kidney. Biochim Biophys Acta 99:78–95

    Article  CAS  PubMed  Google Scholar 

  88. Nardini M, Ricci G, Caccuri AM, Solinas SP, Vesci L, Cavallini D (1988) Purification and characterization of a ketimine-reducing enzyme. Eur J Biochem 173:689–694

    Article  CAS  PubMed  Google Scholar 

  89. Nardini M, Ricci G, Vesci L, Pecci L, Cavallini D (1988) Bovine brain ketimine reductase. Biochim Biophys Acta 957:286–292

    Article  CAS  PubMed  Google Scholar 

  90. Hallen A, Cooper AJL, Jamie JF, Haynes PA, Willows RD (2011) Mammalian forebrain ketimine reductase identified as μ-crystallin; potential regulation by thyroid hormones. J Neurochem 118:379–387

    Article  CAS  PubMed  Google Scholar 

  91. Kim RY, Gasser R, Wistow GJ (1992) μ-Crystallin is a mammalian homologue of Agrobacterium ornithine cyclodeaminase and is expressed in human retina. Proc Natl Acad Sci USA 89:9292–9296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Segovia L, Horwitz J, Gasser R, Wistow G (1997) Two roles for μ-crystallin: a lens structural protein in diurnal marsupials and a possible enzyme in mammalian retinas. Mol Vis 3:9

    CAS  PubMed  Google Scholar 

  93. Augusteyn RC (2011) Lens growth and protein changes in the eastern grey kangaroo. Mol Vis 17:3234–3242

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Vie MP, Evrard C, Osty J, Breton-Gilet A, Blanchet P, Pomerance M, Rouget P, Francon J, Blondeau JP (1997) Purification, molecular cloning, and functional expression of the human nicotinamide-adenine dinucleotide phosphate-regulated thyroid hormone-binding protein. Mol Endocrinol 11:1728–1736

    Article  CAS  PubMed  Google Scholar 

  95. Hashizume K, Miyamoto T, Ichikawa K, Yamauchi K, Kobayashi M, Sakurai A, Ohtsuka H, Nishii Y, Yamada T (1989) Purification and characterization of NADPH-dependent cytosolic 3,5,3′-triiodo- l-thyronine binding protein in rat kidney. J Biol Chem 264:4857–4863

    CAS  PubMed  Google Scholar 

  96. Kobayashi M, Hashizume K, Suzuki S, Ichikawa K, Takeda T (2002) A novel NADPH-dependent cytosolic 3,5,3′-triiodo- l-thyronine-binding protein (CTBP; 5.1S) in rat liver: a comparison with 4.7 S NADPH-dependent CTBP. Endocrinology 129:1701–1708

    Article  Google Scholar 

  97. Mori J, Suzuki S, Kobayashi M, Inagaki T, Komatsu A, Takeda T, Miyamoto T, Ichikawa K, Hashizume K (2002) Nicotinamide adenine dinucleotide phosphate-dependent cytosolic T3 binding protein as a regulator for T3-mediated transactivation. Endocrinology 143:1538–1544

    Article  CAS  Google Scholar 

  98. Suzuki S, Mori J, Kobayashi M, Inagaki T, Inaba H, Komatsu A, Yamashita K, Takeda T, Miyamoto T, Ichikawa K, Hashizume K (2003) Cell-specific expression of NADPH-dependent cytosolic 3,5,3′-triiodo-l-thyronine-binding protein (p38CTBP). Eur J Endocrinol 148:259–2568

    Article  CAS  PubMed  Google Scholar 

  99. Suzuki S, Mori JI, Kobayashi M, Inagaki T, Komatsu A, Yamashita K, Takeda T, Miyamoto T, Ichikawa K, Hashizume K (2003) Presence of functional domains in NADPH-dependent cytosolic 3,5,3′-Triiodo-l-thyronine (T3)-binding protein (p38CTBP) molecule: analyses with deletion mutants. Horm Metab Res 35(10):577–582

    Article  CAS  PubMed  Google Scholar 

  100. Cheng Z, Sun L, He J, Gong W (2007) Crystal structure of human mu-crystallin complexed with NADPH. Protein Sci 16:329–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Borel F, Hachi I, Palencia A, Gaillard MC, Ferrer JL (2014) Crystal structure of mouse µ-crystallin complexed with NADPH and the T3 thyroid hormone. FEBS J 281:1598–1612

    Article  CAS  PubMed  Google Scholar 

  102. Hallen A, Jamie JF, Cooper AJL (2014) Imine reductases: a comparison of glutamate dehydrogenase to ketimine reductases in the brain. Neurochem Res 39:527–5241

    Article  CAS  PubMed  Google Scholar 

  103. Hallen A, Cooper AJ, Smith JR, Jamie JF, Karuso P (2015) Ketimine reductase/CRYM catalyzes reductive alkylamination of α-keto acids, confirming its function as an imine reductase. Amino Acids 47:2457–2461

    Article  CAS  PubMed  Google Scholar 

  104. Hochreiter MC, Schellenberg KA (1969) α-Iminoglutarate formation by beef liver l-glutamate dehydrogenase. Detection by borohydride or dithionite reduction to glutamate. J Am Chem Soc 91:6530–6531

    Article  CAS  PubMed  Google Scholar 

  105. Hochreiter MC, Patek DR, Schellenberg KA (1972) Catalysis of α-iminoglutarate formation from α-ketoglutarate and ammonia by bovine glutamate dehydrogenase. J Biol Chem 247:6271–6276

    CAS  PubMed  Google Scholar 

  106. Goodman JL, Wang S, Alam S, Ruzicka FJ, Frey PA, Wedekind JE (2004) Ornithine cyclodeaminase: structure, mechanism of action, and implications for the μ-crystallin family. BioChemistry 43:13883–13891

    Article  CAS  PubMed  Google Scholar 

  107. Gatto GJ Jr, Boyne MT 2nd, Kelleher NL, Walsh CT (2006) Biosynthesis of pipecolic acid by RapL, a lysine cyclodeaminase encoded in the rapamycin gene cluster. J Am Chem Soc 128:3838–3847

    Article  CAS  PubMed  Google Scholar 

  108. Gallagher DT, Monbouquette HG, Schroder I, Robinson H, Holden MJ, Smith NN (2004) Structure of alanine dehydrogenase from Archaeoglobus: active site analysis and relation to bacterial cyclodeaminases and mammalian μ-crystallin. J Mol Biol 342:119–130

    Article  CAS  PubMed  Google Scholar 

  109. Schroder I, Vadas A, Johnson E, Lim S, Monbouquette HG (2004) A novel archaeal alanine dehydrogenase homologous to ornithine cyclodeaminase and μ-crystallin. J Bacteriol 186:7680–7689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Bergmeyer HU (1974) Methods of Enzymatic Analysis. Verlag Chemie Weinheim. Academic Press, Inc., New York

    Google Scholar 

  111. Zhang Y, Mao J, Yu PH, Xiao S (2012) A micro trapping system coupled with a high performance liquid chromatography procedure for methylamine determination in both tissue and cigarette smoke. Anal Chim Acta 752:106–111

    Article  CAS  PubMed  Google Scholar 

  112. Cooper AJL, Leung LK, Asano Y (1989) Enzymatic cycling assay for phenylpyruvate. Anal Biochem 183:210–214

    Article  CAS  PubMed  Google Scholar 

  113. Liang CC (1962) Studies on experimental thiamine deficiency. Trends of keto acid formation and detection of glyoxylic acid. Biochem J 82:429–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Funai T, Ichiyama A (1986) High-performance liquid chromatographic determination of glyoxylate in rat liver. J Biochem 99:579–589

    Article  CAS  PubMed  Google Scholar 

  115. Cavallini D, Ricci G, Duprè S, Pecci L, Costa M, Matarese RM, Pensa B, Antonucci A, Solinas SP, Fontana M (1991) Sulfur-containing cyclic ketimines and imino acids. A novel family of endogenous products in the search for a role. Eur J Biochem 202:217–223

    Article  CAS  PubMed  Google Scholar 

  116. Ricci G, Vesci L, Nardini M, Arduini A, Storto S, Rosato N, Cavallini D (1989) Detection of 2H-1,4-thiazine-5,6-dihydro-3,5-dicarboxylic acid (lanthionine ketimine) in the bovine brain by a fluorometric assay. Biochim Biophys Acta 990:211–215

    Article  CAS  PubMed  Google Scholar 

  117. Antonucci A, Pecci L, Fontana M, Cavallini D (1990) Influence of diet on cystathionine ketimine and lanthionine ketimine content in human urine. Ital J Biochem 39:100–105

    CAS  PubMed  Google Scholar 

  118. Fontana M, Brunori A, Costa M, Antonucci A (1997) Detection of cystathionine ketimine and lanthionine ketimine in human brain. Neurochem Res 22:821–824

    Article  CAS  PubMed  Google Scholar 

  119. Fontana M, Ricci G, Solinas SP, Antonucci A, Serao I, Duprè S, Cavallini D (1990) [35S]Lanthionine ketimine binding to bovine brain membranes. Biochem Biophys Res Commun 171:480–486

    Article  CAS  PubMed  Google Scholar 

  120. Duprè S, Fontana M, Costa M, Pecci L, Ricci G, Cavallini D (1993) Characterization of [35S]lanthionine ketimine specific binding to bovine brain membranes. Biochem Biophys Res Commun 195:673–677

    Article  PubMed  Google Scholar 

  121. Fontana M, Costa M, Duprè S (1996) Solubilization of [35S]lanthionine ketimine binding sites from bovine brain. Neurochem Int 28:169–173

    Article  CAS  PubMed  Google Scholar 

  122. Zhang J, Sugahara K, Hashimoto K, Sagara Y, Fontana M, Duprè S, Kodama H (1997) Lanthionine ketimine and S-(2-aminoethyl)-l-cysteine ketimine induce the tyrosyl phosphorylation of 45 kDa protein in parallel with its stimulation of superoxide generation in human neutrophils. Physiol Chem Phys Med NMR 29:199–211

    CAS  PubMed  Google Scholar 

  123. Hensley K, Venkova K, Christov A (2010) Emerging biological importance of central nervous system lanthionines. Molecules 15:5581–5594

    Article  CAS  PubMed  Google Scholar 

  124. Hensley K, Christov A, Kamat S, Zhang XC, Jackson KW, Snow S, Post J (2010) Proteomic identification of binding partners for the brain metabolite lanthionine ketimine (LK) and documentation of LK effects on microglia and motoneuron cell cultures. J Neurosci 30:2979–2988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hensley K, Venkova K, Christov A, Gunning W, Park J (2011) Collapsin response mediator protein-2: an emerging pathologic feature and therapeutic target for neurodisease indications. Mol Neurobiol 43:180–191

    Article  CAS  PubMed  Google Scholar 

  126. Nada SE, Tulsulkar J, Raghavan A, Hensley K, Shah ZA (2012) A derivative of the CRMP2 binding compound lanthionine ketimine provides neuroprotection in a mouse model of cerebral ischemia. Neurochem Int 61:1357–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hubbard C, Benda E, Hardin T, Baxter T, St John E, O’Brien S, Hensley K, Holgado AM (2013) Lanthionine ketimine ethyl ester partially rescues neurodevelopmental defects in unc-33 (DPYSL2/CRMP2) mutants. J Neurosci Res 91:1183–1190

    Article  CAS  PubMed  Google Scholar 

  128. Hensley K, Gabbita SP, Venkova K, Hristov A, Johnson MF, Eslami P, Harris-White ME (2013) A derivative of the brain metabolite lanthionine ketimine improves cognition and diminishes pathology in the 3×Tg-AD mouse model of Alzheimer disease. J Neuropathol Exp Neurol 72:955–969

    Article  CAS  PubMed  Google Scholar 

  129. Hensley K, Denton TT (2015) Alternative functions of the brain transsulfuration pathway represent an underappreciated aspect of brain redox biochemistry with significant potential for therapeutic engagement. Free Radic Biol Med 78:123–134

    Article  CAS  PubMed  Google Scholar 

  130. Hensley K, Harris-White ME (2015) Redox regulation of autophagy in healthy brain and neurodegeneration. Neurobiol Dis 84:50–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Harris-White ME, Ferbas KG, Johnson MF, Eslami P, Poteshkina A, Venkova K, Christov A, Hensley K (2015) A cell-penetrating ester of the neural metabolite lanthionine ketimine stimulates autophagy through the mTORC1 pathway: evidence for a mechanism of action with pharmacological implications for neurodegenerative pathologies. Neurobiol Dis 84:60–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Dupree JL, Polak PE, Hensley K, Pelligrino D, Feinstein DL (2015) Lanthionine ketimine ester provides benefit in a mouse model of multiple sclerosis. J Neurochem 134:302–314

    Article  CAS  PubMed  Google Scholar 

  133. Hensley K, Poteshkina A, Johnson MF, Eslami P, Gabbita SP, Hristov A, Venkova-Hristova K, Harris-White ME (2015) Autophagy modulation by lanthionine ketimine ethyl ester improves long-term outcome following central fluid percussion injury in the mouse. J Neurotrauma. doi:10.1089/neu.2015.4196

  134. Lewis ML, Rowe, CJ, Sewald, N, Sutherland JD, Wilson EJ, Wright MC (1993) The effect of pH on the solution of structure of ∆1-pyrroline-2-carboxylate as revealed by NMR and mass spectrometry. Bioorg Med Chem Lett 3:1193–1196

    Article  CAS  Google Scholar 

  135. Nishina Y, Sato K, Shiga K (1991) Isomerization of ∆1-piperideine-2-carboxylate to ∆2-piperideine-2-carboxylate on complexation with flavoprotein d-amino acid oxidase. J Biochem (Tokyo) 109:705–710

    Article  CAS  PubMed  Google Scholar 

  136. Srinivasan R, Medary RT, Fisher HF, Norris DJ, Steward R (1982) The pyridinium-dihydropyridine system. Reduction potentials and the mechanism of oxidation of 1,4-dihydropyridines by a Schiff base. J Am Chem Soc 104:807–812

    Article  CAS  Google Scholar 

  137. Lu SPL AH (1998) Enamine/imine tautomerism in α,β-unsaturated-α-amino acids. Tetrahedron 54:15097–15104

    Article  Google Scholar 

  138. Venkatasan PP, Hamilton GA (1986) Then nonenzymic hydrolysis of ∆2-thiazoline-2-carboxylate: the product of the suspected physiological reaction catalysed by d-amino acid oxidase. Bioorg Chem 14:392–404

    Article  Google Scholar 

  139. Hamilton GA, Buckthal DJ, Mortensen RM, Zerby KW (1979) Reactions of cysteamine and other amine metabolites with glyoxylate and oxygen catalyzed by mammalian d-amino acid oxidase. Proc Natl Acad Sci USA 76:2625–2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Afeefy HY, Hamilton GA (1987) Acetic anhydride in aqueous solution converts ∆2-thiazoline-2-carboxylate to an oxalyl thioester. Bioorg Chem 15:262–268

    Article  CAS  Google Scholar 

  141. Pinto JT, Van Raamsdonk JM, Leavitt BR, Hayden MR, Jeitner TM, Thaler HT, Krasnikov BF, Cooper AJL (2005) Treatment of YAC128 mice and their wild-type littermates with cystamine does not lead to its accumulation in plasma or brain: implications for the treatment of Huntington disease. J Neurochem 94:1087–1101

    Article  CAS  PubMed  Google Scholar 

  142. Coggan SE, Smythe GA, Bilgin A, Grant RS (2009) Age and circadian influences on picolinic acid concentrations in human cerebrospinal fluid. J Neurochem 108:1220–1225

    Article  CAS  PubMed  Google Scholar 

  143. Radhakrishnan N, Meister A (1957) Conversion of hydroxyproline to pyrrole-2-carboxylic acid. J Biol Chem 226:559–571

    CAS  PubMed  Google Scholar 

  144. Heacock AM, Adams E (1975) Formation and excretion of pyrrole-2-carboxylic acid. Whole animal and enzyme studies in the rat. J Biol Chem 250:2599–2608

    CAS  PubMed  Google Scholar 

  145. Doherty MK, Pealing SL, Miles CS, Moysey R, Taylor P, Walkinshaw MD, Reid GA, Chapman SK (2000) Identification of the active site acid/base catalyst in a bacterial fumarate reductase: a kinetic and crystallographic study. Biochemistry 39:10695–10701

    Article  CAS  PubMed  Google Scholar 

  146. Goto M, Muramatsu H, Mihara H, Kurihara T, Esaki N, Omi R, Miyahara I, Hirotsu K (2005) Crystal structures of ∆1-piperideine-2-carboxylate/∆1-pyrroline-2-carboxylate reductase belonging to a new family of NAD(P)H-dependent oxidoreductases: conformational change, substrate recognition, and stereochemistry of the reaction. J Biol Chem 280(49):40875–40884

    Article  CAS  PubMed  Google Scholar 

  147. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci USA 101:16789–16794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Scholfield MR, Vander Zanden CM, Carter M, Ho PS (2013) Halogen bonding (X-bonding): a biological perspective. Protein Sci 22:139–152

    Article  CAS  PubMed  Google Scholar 

  149. Zheng YZ, Deng G, Zhou Y, Sun HY, Yu ZW (2015) Comparative study of halogen- and hydrogen-bond interactions between benzene derivatives and dimethyl sulfoxide. Chemphyschem 16:2594–2601

    Article  CAS  PubMed  Google Scholar 

  150. Cody V (1980) Role of iodine in thyroid hormones: molecular conformation of a halogen-free hormone analogue. J Med Chem 23:584–587

    Article  CAS  PubMed  Google Scholar 

  151. Pinna G, Hiedra L, Prengel H, Broedel O, Eravci M, Meinhold H, Baumgartner A (1999) Extraction and quantification of thyroid hormones in selected regions and subcellular fractions of the rat brain. Brain Res Brain Res Protoc 4:19–28

    Article  CAS  PubMed  Google Scholar 

  152. Okabe N, Fujiwara T, Yamagata Y, Tomita K (1982) The crystal structure of a major metabolite of thyroid hormone: 3,3′,5′-triiodo-l-thyronine. Biochim Biophys Acta 717:179–181

    Article  CAS  PubMed  Google Scholar 

  153. Pinna G, Brödel O, Visser T, Jeitner A, Grau H, Eravci M, Meinhold H, Baumgartner A (2002) Concentrations of seven iodothyronine metabolites in brain regions and the liver of the adult rat. Endocrinology 143:1789–1800

    Article  CAS  Google Scholar 

  154. Beslin A, Vie MP, Blondeau JP, Francon J (1995) Identification by photoaffinity labelling of a pyridine nucleotide-dependent tri-iodothyronine-binding protein in the cytosol of cultured astroglial cells. Biochem J 305:729–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Piehl S, Hoefig CS, Scanlan TS, Köhrle J (2011) Thyronamines–past, present, and future. Endocr Rev 32(1):64–80

    Article  CAS  PubMed  Google Scholar 

  156. Bernal J (1999) Iodine and brain development. Biofactors 10(2–3):271–276

    Article  CAS  PubMed  Google Scholar 

  157. Delange F (2000) The role of iodine in brain development. Proc Nutr Soc 59:75–79

    Article  CAS  PubMed  Google Scholar 

  158. Ahmed RG (2015) Hypothyroidism and brain developmental players. Thyroid Res 8:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lennon AM, Osty J, Nunez J (1980) Cytosolic thyroxine-binding protein and brain development. Mol Cell Endocrinol 18:201–214

    Article  CAS  PubMed  Google Scholar 

  160. Suzuki S, Hashizume K, Ichikawa K, Takeda T (1991) Ontogenesis of the high affinity NADPH-dependent cytosolic 3,5,3′-triiodo-l-thyronine-binding protein in rat. Endocrinology 129:2571–2574

    Article  CAS  PubMed  Google Scholar 

  161. Tebbenkamp AT, Borchelt DR (2010) Analysis of chaperone mRNA expression in the adult mouse brain by meta analysis of the Allen Brain Atlas. PLoS One 5:e13675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Strait KA, Schwartz HL, Perez-Castillo A, Oppenheimer JH (1990) Relationship of c-erbA mRNA content to tissue triiodothyronine nuclear binding capacity and function in developing and adult rats. J Biol Chem 265:10514–10521

    CAS  PubMed  Google Scholar 

  163. Dubois JD, Dussault JH (1977) Ontogenesis of thyroid function in the neonatal rat. Thyroxine (T4) and triiodothyronine (T3) production rates. Endocrinology 101:435–441

    Article  CAS  PubMed  Google Scholar 

  164. Nomura Y, Schmidt-Glenewinkel T, Giacobini E (1978) In vitro formation of piperidine, cadaverine and pipecolic acid in chick and mouse brain during development. Dev Neurosci 1:239–249

    Article  CAS  Google Scholar 

  165. Galli A, Jayanthi LD, Ramsey IS, Miller JW, Fremeau RT Jr, DeFelice LJ (1999) l-Proline and l-pipecolate induce enkephalin-sensitive currents in human embryonic kidney 293 cells transfected with the high-affinity mammalian brain l-proline transporter. J Neurosci 19:6290–6297

    CAS  PubMed  Google Scholar 

  166. Woody NC, Pupene MB (1970) Excretion of pipecolic acid by infants and by patients with hyperlysinemia. Pediatr Res 4:89–95

    Article  CAS  PubMed  Google Scholar 

  167. Versmold HT, Bremer HJ, Herzog V, Siegel G, Bassewitz DB, Irle U, Voss H, Lombeck I, Brauser B (1977) A metabolic disorder similar to Zellweger syndrome with hepatic acatalasia and absence of peroxisomes, altered content and redox state of cytochromes, and infantile cirrhosis with hemosiderosis. Eur J Pediatr 124:261–275

    Article  CAS  PubMed  Google Scholar 

  168. Arneson DW, Tipton RE, Ward JC (1982) Hyperpipecolic acidemia. Occurrence in an infant with clinical findings of the cerebrohepatorenal (Zellweger) syndrome. Arch Neurol 39:713–716

    Article  CAS  PubMed  Google Scholar 

  169. Dalazen GR, Terra M, Jacques CE, Coelho JG, Freitas R, Mazzola PN, Dutra-Filho CS (2014) Pipecolic acid induces oxidative stress in vitro in cerebral cortex of young rats and the protective role of lipoic acid. Metab Brain Dis 29:175–178

    Article  CAS  PubMed  Google Scholar 

  170. Wanders RJ, Romeyn GJ, van Roermund CW, Schutgens RB, van den Bosch H, Tager JM (1988) Identification of l-pipecolate oxidase in human liver and its deficiency in the Zellweger syndrome. Biochem Biophys Res Commun 154:33–38

    Article  CAS  PubMed  Google Scholar 

  171. Wanders RJ, Romeyn GJ, Schutgens RB, Tager JM (1989) l-Pipecolate oxidase: a distinct peroxisomal enzyme in man. Biochem Biophys Res Commun 164:550–555

    Article  CAS  PubMed  Google Scholar 

  172. Mihalik SJ, Moser HW, Watkins PA, Danks DM, Poulos A, Rhead WJ (1989) Peroxisomal l-pipecolic acid oxidation is deficient in liver from Zellweger syndrome patients. Pediatr Res 25:548–552

    Article  CAS  PubMed  Google Scholar 

  173. Trijbels JM, Monnens LA, Melis G, van den Broekvan EM, Bruckwilder M (1987) Localization of pipecolic acid metabolism in rat liver peroxisomes: probable explanation for hyperpipecolataemia in Zellweger syndrome. J Inherit Metab Dis 10(2):128–134

    Article  CAS  PubMed  Google Scholar 

  174. Matsumoto S, Yamamoto S, Sai K, Maruo K, Adachi M, Saitoh M, Nishizaki T (2003) Pipecolic acid induces apoptosis in neuronal cells. Brain Res 980:179–184

    Article  CAS  PubMed  Google Scholar 

  175. de Graaf-Peters VB, Hadders-Algra M (2006) Ontogeny of the human central nervous system: what is happening when? Early Hum Dev 82:257–266

    Article  PubMed  Google Scholar 

  176. Nomura Y, Okuma Y, Segawa T, Schmidt-Glenewinkel T, Giacobini EG (1979) A calcium-dependent, high potassium-induced release of pipecolic acid from rat brain slices. J Neurochem 33:803–805

    Article  CAS  PubMed  Google Scholar 

  177. Nomura Y, Schmidt-Glenewinkel T, Giacobini E (1980) Uptake of piperidine and pipecolic acid by synaptosomes from mouse brain. Neurochem Res 5:1163–1173

    Article  CAS  PubMed  Google Scholar 

  178. Nishio H, Giacobini E (1981) Brain uptake of pipecolic acid, amino acids, amines following intracarotid injection in the mouse. Neurochem Res 6:835–845

    Article  CAS  PubMed  Google Scholar 

  179. Charles AK, Chang YF (1981) Metabolism and uptake of l-pipecolic acid by brain and heart. Life Sci 29:947–954

    Article  CAS  PubMed  Google Scholar 

  180. Charles AK, Chang YF, Myslinski NR (1983) Blood–brain barrier transport of l-pipecolic acid in various rat brain regions. Neurochem Res 8:1087–1096

    Article  CAS  PubMed  Google Scholar 

  181. Chronister RB, DeFrance JF (1982) Implications from studies of the nucleus accumbens: toward a multi-factor theory of schizophrenia. Med Hypotheses 9:115–123

    Article  CAS  PubMed  Google Scholar 

  182. Gray JA, Joseph MH, Hemsley DR, Young AM, Warburton EC, Boulenguez P, Grigoryan GA, Peters SL, Rawlins JN, Taib CT et al (1995) The role of mesolimbic dopaminergic and retrohippocampal afferents to the nucleus accumbens in latent inhibition: implications for schizophrenia. Behav Brain Res 71:19–31

    Article  CAS  PubMed  Google Scholar 

  183. Mikell CB, McKhann GM, Segal S, McGovern RA, Wallenstein MB, Moore H (2009) The hippocampus and nucleus accumbens as potential therapeutic targets for neurosurgical intervention in schizophrenia. Stereotact Funct Neurosurg 87:256–265

    Article  PubMed  PubMed Central  Google Scholar 

  184. Gargiulo PÁ LDeGAI (2014) Glutamate and modeling of schizophrenia symptoms: review of our findings: 1990–2014. Pharmacol Rep 66:343–345

    Article  PubMed  CAS  Google Scholar 

  185. Shirayama Y, Chaki S (2006) Neurochemistry of the nucleus accumbens and its relevance to depression and antidepressant action in rodents. Curr Neuropharmacol 4:277–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Bewernick BH, Hurlemann R, Matusch A, Kayser S, Grubert C, Hadrysiewicz B, Axmacher N, Lemke M, Cooper-Mahkorn D, Cohen MX, Brockmann H, Lenartz D, Sturm V, Schlaepfer TE (2010) Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry 67:110–116

    Article  PubMed  Google Scholar 

  187. Middleton FA, Mirnics K, Pierri JN, Lewis DA, Levitt P (2002) Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci 22:2718–2729

    CAS  PubMed  Google Scholar 

  188. Böhm C, Newrzella D, Herberger S, Schramm N, Eisenhardt G, Schenk V, Sonntag-Buck V, Sorgenfrei O (2006) Effects of antidepressant treatment on gene expression profile in mouse brain: cell type-specific transcription profiling using laser microdissection and microarray analysis. J Neurochem 97(Suppl 1):44–49

    Article  PubMed  CAS  Google Scholar 

  189. Zhu HJ, Appel DI, Gründemann D, Richelson E, Markowitz JS (2012) Evaluation of organic cation transporter 3 (SLC22A3) inhibition as a potential mechanism of antidepressant action. Pharmacol Res 65:491–496

    Article  CAS  PubMed  Google Scholar 

  190. Akbarian S, Ruehl MG, Bliven E, Luiz LA, Peranelli AC, Baker SP, Roberts RC, Bunney WE Jr, Conley RC, Jones EG, Tamminga CA, Guo Y (2005) Chromatin alterations associated with down-regulated metabolic gene expression in the prefrontal cortex of subjects with schizophrenia. Arch Gen Psychiatry 62:829–840

    Article  CAS  PubMed  Google Scholar 

  191. Martins-de-Souza D, Gattaz WF, Schmitt A, Maccarrone G, Hunyadi-Gulyas E, Eberlin MN, Souza GH, Marangoni S, Novello JC, Turck CW, Dias-Neto E (2009) Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia. J Psychiatr Res 43:978–986

    Article  PubMed  Google Scholar 

  192. Sivagnanasundaram S, Crossett B, Dedova I, Cordwell S, Matsumoto I (2007) Abnormal pathways in the genu of the corpus callosum in schizophrenia pathogenesis: a proteome study. Proteomics Clin Appl 1:1291–1305

    Article  CAS  PubMed  Google Scholar 

  193. Abe S, Katagiri T, Saito-Hisaminato A, Usami S, Inoue Y, Tsunoda T, Nakamura Y (2003) Identification of CRYM as a candidate responsible for nonsyndromic deafness, through cDNA microarray analysis of human cochlear and vestibular tissues. Am J Hum Genet 72:73–82

    Article  CAS  PubMed  Google Scholar 

  194. Danpure CJ (2006) Primary hyperoxaluria type 1: AGT mistargeting highlights the fundamental differences between the peroxisomal and mitochondrial protein import pathways. Biochim Biophys Acta 1763:1776–1784

    Article  CAS  PubMed  Google Scholar 

  195. Oshima A, Suzuki S, Takumi Y, Hashizume K, Abe S, Usami S (2006) CRYM mutations cause deafness through thyroid hormone binding properties in the fibrocytes of the cochlea. J Med Genet 43(6):e25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Reed PW, Corse AM, Porter NC, Flanigan KM, Bloch RJ (2007) Abnormal expression of μ-crystallin in facioscapulohumeral muscular dystrophy. Exp Neurol 205:583–586

    Article  CAS  PubMed  Google Scholar 

  197. Seko D, Ogawa S, Li TS, Taimura A, Ono Y (2016) μ-Crystallin controls muscle function through thyroid hormone action. FASEB J 30:1733–1740

    Article  CAS  PubMed  Google Scholar 

  198. Mousses S, Bubendorf L, Wagner U, Hostetter G, Kononen J, Cornelison R, Goldberger N, Elkahloun AG, Willi N, Koivisto P, Ferhle W, Raffeld M, Sauter G, Kallioniemi OP (2002) Clinical validation of candidate genes associated with prostate cancer progression in the CWR22 model system using tissue microarrays. Cancer Res 62:1256–1260

    CAS  PubMed  Google Scholar 

  199. Malinowska K, Cavarretta IT, Susani M, Wrulich OA, Uberall F, Kenner L, Culig Z (2009) Identification of μ- crystallin as an androgen-regulated gene in human prostate cancer. Prostate 69:1109–1118

    Article  CAS  PubMed  Google Scholar 

  200. Navone NM, Logothetis CJ, von Eschenbach AC, Troncoso P (1998) Model systems of prostate cancer: uses and limitations. Cancer Metastasis Rev 17:361–371

    Article  PubMed  Google Scholar 

  201. Fukada Y, Yasui K, Kitayama M, Doi K, Nakano T, Watanabe Y, Nakashima K (2007) Gene expression analysis of the murine model of amyotrophic lateral sclerosis: studies of the Leu126delTT mutation in SOD1. Brain Res 1160:1–10

    Article  CAS  PubMed  Google Scholar 

  202. Hensley K (2007) Lanthionine-related compounds for the treatment of inflammatory diseases. US Patent 2007/0197515A1 (US 2007/0197515A1)

  203. George AJ, Gordon L, Beissbarth T, Koukoulas I, Holsinger RM, Perreau V, Cappai R, Tan SS, Masters CL, Scott HS, Li QX (2010) A serial analysis of gene expression profile of the Alzheimer’s disease Tg2576 mouse model. Neurotox Res 17:360–379

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Part of the cited work cited was supported Macquarie University Research Excellence Scholarship (to AH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur J. L. Cooper.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Special issue: in honor of Dr. Mary McKenna.

An erratum to this article is available at http://dx.doi.org/10.1007/s11064-017-2210-3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hallen, A., Cooper, A.J.L. Reciprocal Control of Thyroid Binding and the Pipecolate Pathway in the Brain. Neurochem Res 42, 217–243 (2017). https://doi.org/10.1007/s11064-016-2015-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2015-9

Keywords

Navigation