Skip to main content
Log in

Insights into Enzyme Catalysis and Thyroid Hormone Regulation of Cerebral Ketimine Reductase/μ-Crystallin Under Physiological Conditions

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Mammalian ketimine reductase is identical to μ-crystallin (CRYM)—a protein that is also an important thyroid hormone binding protein. This dual functionality implies a role for thyroid hormones in ketimine reductase regulation and also a reciprocal role for enzyme catalysis in thyroid hormone bioavailability. In this research we demonstrate potent sub-nanomolar inhibition of enzyme catalysis at neutral pH by the thyroid hormones l-thyroxine and 3,5,3′-triiodothyronine, whereas other thyroid hormone analogues were shown to be far weaker inhibitors. We also investigated (a) enzyme inhibition by the substrate analogues pyrrole-2-carboxylate, 4,5-dibromopyrrole-2-carboxylate and picolinate, and (b) enzyme catalysis at neutral pH of the cyclic ketimines S-(2-aminoethyl)-l-cysteine ketimine (owing to the complex nomenclature trivial names are used for the sulfur-containing cyclic ketimines as per the original authors’ descriptions) (AECK), Δ1-piperideine-2-carboxylate (P2C), Δ1-pyrroline-2-carboxylate (Pyr2C) and Δ2-thiazoline-2-carboxylate. Kinetic data obtained at neutral pH suggests that ketimine reductase/CRYM plays a major role as a P2C/Pyr2C reductase and that AECK is not a major substrate at this pH. Thus, ketimine reductase is a key enzyme in the pipecolate pathway, which is the main lysine degradation pathway in the brain. In silico docking of various ligands into the active site of the X-ray structure of the enzyme suggests an unusual catalytic mechanism involving an arginine residue as a proton donor. Given the critical importance of thyroid hormones in brain function this research further expands on our knowledge of the connection between amino acid metabolism and regulation of thyroid hormone levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AECK:

S-(2-Aminoethyl)-l-cysteine ketimine

CE:

Catalytic efficiency

CRYM:

μ-Crystallin

CTBP:

Cytosolic thyroid hormone binding protein

CysK:

Cystathionine ketmine

DAAO:

d-Amino acid oxidase

DIT:

3,5-Diiodo-l-tyrosine

DTT:

Dithiothreitol

LK:

Lanthionine ketimine

L-PA:

l-Pipecolic acid

P2C:

Δ1-Piperideine-2-carboxylate

OTE:

Oxalyl thioester

Pyr2C:

Δ1-Pyrroline-2-carboxylate

SEM:

Standard error of the mean

T2C:

Δ2-Thiazoline-2-carboxylate

TL2C:

Thiazolidine-2-carboxylate

T2 :

3,5-Diiodothyronine

T3 :

3,5,3′-l-Triiodothyronine

rT3 :

3,3′,5′-l-Triiodothyronine, reverse T3

T4 :

l-Thyroxine

References

  1. Hashizume K, Miyamoto T, Ichikawa K, Yamauchi K, Sakurai A, Ohtsuka H, Kobayashi M, Nishii Y, Yamada T (1989) Evidence for the presence of two active forms of cytosolic 3,5,3’-triiodo-L-thyronine (T3)-binding protein (CTBP) in rat kidney. Specialized functions of two CTBPs in intracellular T3 translocation. J Biol Chem 264(9):4864–4871

    CAS  PubMed  Google Scholar 

  2. Segovia L, Horwitz J, Gasser R, Wistow G (1997) Two roles for μ-crystallin: a lens structural protein in diurnal marsupials and a possible enzyme in mammalian retinas. Mol Vis 3:9

    CAS  PubMed  Google Scholar 

  3. Hallen A, Cooper AJ, Jamie JF, Haynes PA, Willows RD (2011) Mammalian forebrain ketimine reductase identified as μ-crystallin; potential regulation by thyroid hormones. J Neurochem 118(3):379–387

    Article  CAS  PubMed  Google Scholar 

  4. Nardini M, Ricci G, Caccuri AM, Solinas SP, Vesci L, Cavallini D (1988) Purification and characterization of a ketimine-reducing enzyme. Eur J Biochem 173(3):689–694

    Article  CAS  PubMed  Google Scholar 

  5. Nardini M, Ricci G, Vesci L, Pecci L, Cavallini D (1988) Bovine brain ketimine reductase. Biochim Biophys Acta 957(2):286–292

    Article  CAS  PubMed  Google Scholar 

  6. Lowry OH, Passonneau JV, Schulz DW, Rock MK (1961) The measurement of pyridine nucleotides by enzymatic cycling. J Biol Chem 236:2746–2755

    CAS  PubMed  Google Scholar 

  7. Hallen A, Jamie JF, Cooper AJ (2014) Imine reductases: a comparison of glutamate dehydrogenase to ketimine reductases in the brain. Neurochem Res 39(3):527–541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hallen A, Jamie JF, Cooper AJ (2013) Lysine metabolism in mammalian brain: an update on the importance of recent discoveries. Amino Acids 45(6):1249–1272

    Article  CAS  PubMed  Google Scholar 

  9. Petrakis PL, Greenberg DM (1965) Studies on l-proline:NAD(P)+-oxidoreductase of hog Kidney. Biochim Biophys Acta 99:78–95

    Article  CAS  PubMed  Google Scholar 

  10. Garweg G, von Rehren D, Hintze U (1980) l-Pipecolate formation in the mammalian brain. Regional distribution of Δ1-pyrroline-2-carboxylate reductase activity. J Neurochem 35(3):616–621

    Article  CAS  PubMed  Google Scholar 

  11. Visser WF, Verhoeven-Duif NM, de Koning TJ (2012) Identification of a human trans-3-hydroxy-L-proline dehydratase, the first characterized member of a novel family of proline racemase-like enzymes. J Biol Chem 287(26):21654–21662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Meister A, Radhakrishnan AN, Buckley SD (1957) Enzymatic synthesis of l-pipecolic acid and l-proline. J Biol Chem 229(2):789–800

    CAS  PubMed  Google Scholar 

  13. Mestichelli LJG, Gupta RN, Spenser ID (1979) The biosynthetic route from ornithine to proline. J Biol Chem 254:640–647

    CAS  PubMed  Google Scholar 

  14. Juncosa JI, Lee H, Silverman RB (2013) Two continuous coupled assays for ornithine-δ-aminotransferase. Anal Biochem 440(2):145–149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Radhakrishnan AN, Meister A (1957) Conversion of hydroxyproline to pyrrole-2-carboxylic acid. J Biol Chem 226(1):559–571

    CAS  PubMed  Google Scholar 

  16. Naber N, Venkatesan PP, Hamilton GA (1982) Inhibition of dopamine β-hydroxylase by thiazoline-2-carboxylate, a suspected physiological product of d-amino acid oxidase. Biochem Biophys Res Commun 107(1):374–380

    Article  CAS  PubMed  Google Scholar 

  17. Fitzpatrick PF, Massey V (1982) Thiazolidine-2-carboxylic acid, an adduct of cysteamine and glyoxylate, as a substrate for d-amino acid oxidase. J Biol Chem 257(3):1166–1171

    CAS  PubMed  Google Scholar 

  18. Afeefy HY, Hamilton GA (1987) Acetic anhydride in aqueous solution converts Δ2-thiazoline-2-carboxylate to an oxalyl thioester. Biol Chem 15:262–268

    CAS  Google Scholar 

  19. Cabello J, Leon B, Prajoux V, Plaza M (1964) Molecular changes during the titration of α-keto-δ-aminovaleric acid. Arch Biochem Biophys 107:51–56

    Article  CAS  PubMed  Google Scholar 

  20. Lu SP, Lewin AH (1998) Enamine/imine tautomerism in α, β-unsaturated-α-amino acids. Tetrahedron 54:15097–15104

    Article  CAS  Google Scholar 

  21. Nishina Y, Sato K, Shiga K (1991) Isomerization of Δ1-piperideine-2-carboxylate to Δ2-piperideine-2-carboxylate on complexation with flavoprotein d-amino acid oxidase. J Biochem (Tokyo) 109(5):705–710

    CAS  Google Scholar 

  22. Lewis ML, Rowe CJ, Sewald N, Sutherland JD, Wilson EJ, Wright MC (1993) The effect of pH on the solution of structure of Δ1-pyrroline-2-carboxylate as revealed by NMR and mass spectrometry. Bioorg Med Chem Lett 3(6):1193–1196

    Article  CAS  Google Scholar 

  23. Venkatasan PP, Hamilton GA (1986) Then nonenzymic hydrolysis of Δ2-thiazoline-2-carboxylate: the product of the suspected physiological reaction catalysed by d-amino acid oxidase. Bioorg Chem 14:392–404

    Article  Google Scholar 

  24. Vie MP, Evrard C, Osty J, Breton-Gilet A, Blanchet P, Pomerance M, Rouget P, Francon J, Blondeau JP (1997) Purification, molecular cloning, and functional expression of the human nicodinamide-adenine dinucleotide phosphate-regulated thyroid hormone-binding protein. Mol Endocrinol 11(11):1728–1736

    Article  CAS  PubMed  Google Scholar 

  25. Beslin A, Vie MP, Blondeau JP, Francon J (1995) Identification by photoaffinity labelling of a pyridine nucleotide-dependent tri-iodothyronine-binding protein in the cytosol of cultured astroglial cells. Biochem J 305(Pt 3):729–737

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Bernal J (2007) Thyroid hormone receptors in brain development and function. Nat Rev Endocrinol 3:249–259

    CAS  Google Scholar 

  27. Cavallini D, Ricci G, Federici G (1983) The ketimine derivatives of thialysine, lanthionine, cystathionine, cystine: preparation and properties. Prog Clin Biol Res 125:355–363

    CAS  PubMed  Google Scholar 

  28. Szollosi G, Kun I, Bartok M (2001) Heterogeneous asymmetric reactions. Part 24. Heterogeneous catalytic enantioselective hydrogenation of the C=N group over cinchona alkaloid modified palladium catalyst. Chirality 13:619–624

    Article  CAS  PubMed  Google Scholar 

  29. Theodorou V, Skobridis K, Tzakos AG, Ragoussis V (2007) A simple method for the alkaline hydrolysis of esters. Tetrahedron Lett 48(46):8230–8233

    Article  CAS  Google Scholar 

  30. Meister A (1954) The α-keto analogues of arginine, ornithine, and lysine. J Biol Chem 206(2):577–585

    CAS  PubMed  Google Scholar 

  31. Liu W, Zhou J, Wong JT (1982) A novel synthesis of 3,5-diiodotyrosine with iodic acid. Anal Biochem 120(1):204–207

    Article  CAS  PubMed  Google Scholar 

  32. Richards JJ, Ballard TE, Huigens RW 3rd, Melander C (2008) Synthesis and screening of an oroidin library against Pseudomonas aeruginosa biofilms. ChemBioChem 9(8):1267–1279

    Article  CAS  PubMed  Google Scholar 

  33. Burch HB, Bradley ME, Lowry OH (1967) The measurement of triphosphopyridine nucleotide and reduced triphosphopyridine nucleotide and the role of hemoglobin in producing erroneous triphosphopyridine nucleotide values. J Biol Chem 242(19):4546–4554

    CAS  PubMed  Google Scholar 

  34. Muramatsu H, Mihara H, Kakutani R, Yasuda M, Ueda M, Kurihara T, Esaki N (2005) The putative malate/lactate dehydrogenase from Pseudomonas putida is an NADPH-dependent Δ1-piperideine-2-carboxylate/Δ1-pyrroline-2-carboxylate reductase involved in the catabolism of d-lysine and d-proline. J Biol Chem 280(7):5329–5335

    Article  CAS  PubMed  Google Scholar 

  35. Morrison JF (1969) Kinetics of the reversible inhibition of enzyme-catalysed reactions by tight-binding inhibitors. Biochim Biophys Acta 185(2):269–286

    Article  CAS  PubMed  Google Scholar 

  36. Borel F, Hachi I, Palencia A, Gaillard MC, Ferrer JL (2014) Crystal structure of mouse μ-crystallin complexed with NADPH and the T3 thyroid hormone. FEBS J 281(6):1598–1612

    Article  CAS  PubMed  Google Scholar 

  37. Srinivasan R, Fisher HF (1986) Structural features facilitating the glutamate dehydrogenase catalyzed α-imino acid-α-amino acid interconversion. Arch Biochem Biophys 246(2):743–750

    Article  CAS  PubMed  Google Scholar 

  38. Srinivasan R, Medary RT, Fisher HF, Norris DJ, Steward R (1982) The pyridinium-dihydropyridine system. Reduction potentials and the mechanism of oxidation of 1,4-dihydropyridines by a Schiff base. J Am Chem Soc 104:807–812

    Article  CAS  Google Scholar 

  39. Cody V (1980) Role of iodine in thyroid hormones: molecular conformation of a halogen-free hormone analogue. J Med Chem 23(5):584–587

    Article  CAS  PubMed  Google Scholar 

  40. Okabe N, Fujiwara T, Yamagata Y, Tomita K (1982) The crystal structure of a major metabolite of thyroid hormone: 3,3′,5′-triiodo-l-thyronine. Biochim Biophys Acta 717(1):179–181

    Article  CAS  PubMed  Google Scholar 

  41. Campos-Barros A, Hoell T, Musa A, Sampaolo S, Stoltenburg G, Pinna G, Eravci M, Meinhold H, Baumgartner A (1996) Phenolic and tyrosyl ring iodothyronine deiodination and thyroid hormone concentrations in the human central nervous system. J Clin Endocrinol Metab 81(6):2179–2185

    CAS  PubMed  Google Scholar 

  42. Pinna G, Meinhold H, Hiedra L, Thoma R, Hoell T, Graf KJ, Stoltenburg-Didinger G, Eravci M, Prengel H, Brodel O, Finke R, Baumgartner A (1997) Elevated 3,5-diiodothyronine concentrations in the sera of patients with nonthyroidal illnesses and brain tumors. J Clin Endocrinol Metab 82(5):1535–1542

    Article  CAS  PubMed  Google Scholar 

  43. Heacock AM, Adams E (1975) Formation and excretion of pyrrole-2-carboxylic acid. Whole animal and enzyme studies in the rat. J Biol Chem 250(7):2599–2608

    CAS  PubMed  Google Scholar 

  44. Ebada SS, Edrada-Ebel R, de Voogd NJ, Wray V, Proksch P (2009) Dibromopyrrole alkaloids from the marine sponge Acanthostylotella sp. Nat Prod Commun 4(1):47–52

    CAS  PubMed  Google Scholar 

  45. Leklem JE, Brown RR, Hankes LV, Schmaeler M (1971) Tryptophan metabolism in the cat: a study with carbon-14-labeled compounds. Am J Vet Res 32(2):335–344

    CAS  PubMed  Google Scholar 

  46. Coggan SE, Smythe GA, Bilgin A, Grant RS (2009) Age and circadian influences on picolinic acid concentrations in human cerebrospinal fluid. J Neurochem 108(5):1220–1225

    Article  CAS  PubMed  Google Scholar 

  47. Goto M, Muramatsu H, Mihara H, Kurihara T, Esaki N, Omi R, Miyahara I, Hirotsu K (2005) Crystal structures of Δ1-piperideine-2-carboxylate/Δ1-pyrroline-2-carboxylate reductase belonging to a new family of NAD(P)H-dependent oxidoreductases: conformational change, substrate recognition, and stereochemistry of the reaction. J Biol Chem 280(49):40875–40884

    Article  CAS  PubMed  Google Scholar 

  48. Goodman JL, Wang S, Alam S, Ruzicka FJ, Frey PA, Wedekind JE (2004) Ornithine cyclodeaminase: structure, mechanism of action, and implications for the µ-crystallin family. Biochemistry 43(44):13883–13891

    Article  CAS  PubMed  Google Scholar 

  49. Meister A, Buckley SD (1957) Pyridine nucleotide-dependent reduction of the α-keto acid analogue of lysine to l-pipecolic acid. Biochim Biophys Acta 23(1):202–203

    Article  CAS  PubMed  Google Scholar 

  50. Chang YF (1976) Pipecolic acid pathway: the major lysine metabolic route in the rat brain. Biochem Biophys Res Commun 69(1):174–180

    Article  CAS  PubMed  Google Scholar 

  51. Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49(20):5912–5931

    Article  CAS  PubMed  Google Scholar 

  52. Kim RY, Gasser R, Wistow GJ (1992) μ-Crystallin is a mammalian homologue of Agrobacterium ornithine cyclodeaminase and is expressed in human retina. Proc Natl Acad Sci USA 89(19):9292–9296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Schroder I, Vadas A, Johnson E, Lim S, Monbouquette HG (2004) A novel archaeal alanine dehydrogenase homologous to ornithine cyclodeaminase and μ-crystallin. J Bacteriol 186(22):7680–7689

    Article  PubMed Central  PubMed  Google Scholar 

  54. Bergmeyer HU (1974) Methods of enzymatic analysis, Verlag Chemie Weinheim. Academic Press Inc, New York

    Google Scholar 

  55. Pinna G, Hiedra L, Prengel H, Broedel O, Eravci M, Meinhold H, Baumgartner A (1999) Extraction and quantification of thyroid hormones in selected regions and subcellular fractions of the rat brain. Brain Res Brain Res Protoc 4(1):19–28

    Article  CAS  PubMed  Google Scholar 

  56. Doherty MK, Pealing SL, Miles CS, Moysey R, Taylor P, Walkinshaw MD, Reid GA, Chapman SK (2000) Identification of the active site acid/base catalyst in a bacterial fumarate reductase: a kinetic and crystallographic study. Biochemistry 39(35):10695–10701

    Article  CAS  PubMed  Google Scholar 

  57. Francelle L, Galvan L, Gaillard MC, Guillermier M, Houitte D, Bonvento G, Petit F, Jan C, Dufour N, Hantraye P, Elalouf JM, De Chaldee M, Deglon N, Brouillet E (2015) Loss of the thyroid hormone-binding protein Crym renders striatal neurons more vulnerable to mutant huntingtin in Huntington’s disease. Hum Mol Genet 24(6):1563–1573

    Article  PubMed Central  PubMed  Google Scholar 

  58. Fukada Y, Yasui K, Kitayama M, Doi K, Nakano T, Watanabe Y, Nakashima K (2007) Gene expression analysis of the murine model of amyotrophic lateral sclerosis: studies of the Leu126delTT mutation in SOD1. Brain Res 1160:1–10

    Article  CAS  PubMed  Google Scholar 

  59. Mistry M, Gillis J, Pavlidis P (2013) Genome-wide expression profiling of schizophrenia using a large combined cohort. Mol Psychiatry 18(2):215–225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Bohm C, Newrzella D, Herberger S, Schramm N, Eisenhardt G, Schenk V, Sonntag-Buck V, Sorgenfrei O (2006) Effects of antidepressant treatment on gene expression profile in mouse brain: cell type-specific transcription profiling using laser microdissection and microarray analysis. J Neurochem 97(Suppl 1):44–49

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by a Macquarie University Research Excellence Scholarship.

Conflict of interest

The authors have nothing to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Hallen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1414 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hallen, A., Cooper, A.J.L., Jamie, J.F. et al. Insights into Enzyme Catalysis and Thyroid Hormone Regulation of Cerebral Ketimine Reductase/μ-Crystallin Under Physiological Conditions. Neurochem Res 40, 1252–1266 (2015). https://doi.org/10.1007/s11064-015-1590-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1590-5

Keywords

Navigation