Skip to main content
Log in

Ketimine reductase/CRYM catalyzes reductive alkylamination of α-keto acids, confirming its function as an imine reductase

  • Short Communication
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Recently, crystalized mouse ketimine reductase/CRYM complexed with NADPH was found to have pyruvate bound in its active site. We demonstrate that the enzyme binds α-keto acids, such as pyruvate, in solution, and catalyzes the formation of N-alkyl-amino acids from alkylamines and α-keto acids (via reduction of imine intermediates), but at concentrations of these compounds not expected to be encountered in vivo. These findings confirm that, mechanistically, ketimine reductase/CRYM acts as a classical imine reductase and may explain the finding of bound pyruvate in the crystallized protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Abbreviations

CRYM:

μ-Crystallin

DTT:

Dithiothreitol

LCMS:

Liquid chromatography-mass spectrometry

P2C:

Δ1-Piperideine-2-carboxylate

T3 :

3,5,3′-Triiodothyronine

P2CR:

Δ1-Piperideine-2-carboxylate reductase

TLC:

Thin layer chromatography

References

  • Bergmeyer HU (1974) Methods of enzymatic analysis. Verlag Chemie Weinheim, Academic Press Inc., New York

    Google Scholar 

  • Borel F, Hachi I, Palencia A, Gaillard MC, Ferrer JL (2014) Crystal structure of mouse μ-crystallin complexed with NADPH and the T3 thyroid hormone. FEBS J 281:1598–1612

    Article  CAS  PubMed  Google Scholar 

  • Chang YF (1976) Pipecolic acid pathway: the major lysine metabolic route in the rat brain. Biochem Biophys Res Commun 69:174–180

    Article  CAS  PubMed  Google Scholar 

  • Cooper AJ, Plum F (1987) Biochemistry and physiology of brain ammonia. Physiol Rev 67:440–519

    CAS  PubMed  Google Scholar 

  • Gallagher DT, Monbouquette HG, Schroder I, Robinson H, Holden MJ, Smith NN (2004) Structure of alanine dehydrogenase from Archaeoglobus: active site analysis and relation to bacterial cyclodeaminases and mammalian μ-crystallin. J Mol Biol 342:119–130

    Article  CAS  PubMed  Google Scholar 

  • Gatto GJ Jr, Boyne MT 2nd, Kelleher NL, Walsh CT (2006) Biosynthesis of pipecolic acid by RapL, a lysine cyclodeaminase encoded in the rapamycin gene cluster. J Am Chem Soc 128:3838–3847

    Article  CAS  PubMed  Google Scholar 

  • Goodman JL, Wang S, Alam S, Ruzicka FJ, Frey PA, Wedekind JE (2004) Ornithine cyclodeaminase: structure, mechanism of action, and implications for the μ-crystallin family. Biochemistry 43:13883–13891

    Article  CAS  PubMed  Google Scholar 

  • Hallen A, Cooper AJ, Jamie JF, Haynes PA, Willows RD (2011) Mammalian forebrain ketimine reductase identified as μ-crystallin; potential regulation by thyroid hormones. J Neurochem 118:379–387

    Article  CAS  PubMed  Google Scholar 

  • Hallen A, Cooper AJ, Jamie JF, Karuso P (2015) Insights into enzyme catalysis and thyroid hormone regulation of cerebral ketimine reductase/mu-crystallin under physiological conditions. Neurochem Res 40:1252–1266

    Article  CAS  PubMed  Google Scholar 

  • Hochreiter MC, Schellenberg KA (1969) Alpha-iminoglutarate formation by beef liver l-glutamate dehydrogenase. Detection by borohydride or dithionite reduction to glutamate. J Am Chem Soc 91:6530–6531

    Article  CAS  PubMed  Google Scholar 

  • Jenks WP (1969) Catalysis in Chemistry and Enzymology. McGraw Hill, New York

    Google Scholar 

  • Kim JS, Giacobini E (1985) Pipecolic acid levels and transport in developing mouse brain. Brain Res 354:181–186

    Article  CAS  PubMed  Google Scholar 

  • Kim RY, Gasser R, Wistow GJ (1992) μ-Crystallin is a mammalian homologue of Agrobacterium ornithine cyclodeaminase and is expressed in human retina. Proc Natl Acad Sci USA 89:9292–9296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meister A (1954) The alpha-keto analogues of arginine, ornithine, and lysine. J Biol Chem 206:577–585

    CAS  PubMed  Google Scholar 

  • Meister A, Buckley SD (1957) Pyridine nucleotide-dependent reduction of the α-keto acid analogue of lysine to L-pipecolic acid. Biochim Biophys Acta 23:202–203

    Article  CAS  PubMed  Google Scholar 

  • Mihara H, Muramatsu H, Kakutani R, Yasuda M, Ueda M, Kurihara T, Esaki N (2005) N-methyl-l-amino acid dehydrogenase from Pseudomonas putida. A novel member of an unusual NAD(P)-dependent oxidoreductase superfamily. FEBS J 272:1117–1123

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu H, Mihara H, Kakutani R, Yasuda M, Ueda M, Kurihara T, Esaki N (2005) The putative malate/lactate dehydrogenase from Pseudomonas putida is an NADPH-dependent Δ1-piperideine-2-carboxylate/Δ1-pyrroline-2-carboxylate reductase involved in the catabolism of d-lysine and d-proline. J Biol Chem 280:5329–5335

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu H, Mihara H, Yasuda M, Ueda M, Kurihara T, Esaki N (2006) Enzymatic synthesis of L-pipecolic acid by Δ1-piperideine-2-carboxylate reductase from Pseudomonas putida. Biosci Biotechnol Biochem 70:2296–2298

    Article  CAS  PubMed  Google Scholar 

  • Nardini M, Ricci G, Caccuri AM, Solinas SP, Vesci L, Cavallini D (1988) Purification and characterization of a ketimine-reducing enzyme. Eur J Biochem 173:689–694

    Article  CAS  PubMed  Google Scholar 

  • Schroder I, Vadas A, Johnson E, Lim S, Monbouquette HG (2004) A novel archaeal alanine dehydrogenase homologous to ornithine cyclodeaminase and mu-crystallin J Bacteriol 186:7680–7689

    PubMed  Google Scholar 

  • Segovia L, Horwitz J, Gasser R, Wistow G (1997) Two roles for μ-crystallin: a lens structural protein in diurnal marsupials and a possible enzyme in mammalian retinas Mol Vis 3:9

    CAS  Google Scholar 

  • Suzuki S, Mori J, Hashizume K (2007) μ-Crystallin, a NADPH-dependent T(3)-binding protein in cytosol. Trends Endocrinol Metab 18:286–289

    Article  CAS  PubMed  Google Scholar 

  • Turchany JM et al (1993) Comparative metabolism and structure of BCKD-E2 in primary biliary cirrhosis. J Autoimmun 6:459–466

    Article  CAS  PubMed  Google Scholar 

  • Vie MP et al (1997) Purification, molecular cloning, and functional expression of the human nicotinamide-adenine dinucleotide phosphate-regulated thyroid hormone-binding protein. Mol Endocrinol 11:1728–1736

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Mao J, Yu PH, Xiao S (2012) A micro trapping system coupled with a high performance liquid chromatography procedure for methylamine determination in both tissue and cigarette smoke Anal Chim Acta 752:106–111

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Hallen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: C. Schiene-Fischer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hallen, A., Cooper, A.J.L., Smith, J.R. et al. Ketimine reductase/CRYM catalyzes reductive alkylamination of α-keto acids, confirming its function as an imine reductase. Amino Acids 47, 2457–2461 (2015). https://doi.org/10.1007/s00726-015-2044-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2044-8

Keywords

Navigation