Skip to main content
Log in

Structural biology of proline catabolism

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The proline catabolic enzymes proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase catalyze the 4-electron oxidation of proline to glutamate. These enzymes play important roles in cellular redox control, superoxide generation, apoptosis and cancer. In some bacteria, the two enzymes are fused into the bifunctional enzyme, proline utilization A. Here we review the three-dimensional structural information that is currently available for proline catabolic enzymes. Crystal structures have been determined for bacterial monofunctional proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase, as well as the proline dehydrogenase and DNA-binding domains of proline utilization A. Some of the functional insights provided by analyses of these structures are discussed, including substrate recognition, catalytic mechanism, biochemical basis of inherited proline catabolic disorders and DNA recognition by proline utilization A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams E, Frank L (1980) Metabolism of proline and the hydroxyprolines. Annu Rev Biochem 49:1005–1061

    Article  PubMed  CAS  Google Scholar 

  • Baban BA, Vinod MP, Tanner JJ, Becker DF (2004) Probing a hydrogen bond pair and the FAD redox properties in the proline dehydrogenase domain of Escherichia coli PutA. Biochim Biophys Acta 1701:49–59

    PubMed  CAS  Google Scholar 

  • Bearne SL, Wolfenden R (1995) Glutamate gamma-semialdehyde as a natural transition state analogue inhibitor of Escherichia coli glucosamine-6-phosphate synthase. Biochemistry 34:11515–11520

    Article  PubMed  CAS  Google Scholar 

  • Becker DF, Thomas EA (2001) Redox properties of the PutA protein from Escherichia coli and the influence of the flavin redox state on PutA–DNA interactions. Biochemistry 40:4714–4721

    Article  PubMed  CAS  Google Scholar 

  • Bender HU, Almashanu S, Steel G, Hu CA, Lin WW, Willis A, Pulver A, Valle D (2005) Functional consequences of PRODH missense mutations. Am J Hum Genet 76:409–420

    Article  PubMed  CAS  Google Scholar 

  • Bringaud F, Riviere L, Coustou V (2006) Energy metabolism of trypanosomatids: adaptation to available carbon sources. Mol Biochem Parasitol 149:1–9

    Article  PubMed  CAS  Google Scholar 

  • Brown ED, Wood JM (1992) Redesigned purification yields a fully functional PutA protein dimer from Escherichia coli. J Biol Chem 267:13086–13092

    PubMed  CAS  Google Scholar 

  • Custer AV (2005) Stoichiometric estimates of the biochemical conversion efficiencies in tsetse metabolism. BMC Ecol 5:6

    Article  PubMed  CAS  Google Scholar 

  • Donald SP, Sun XY, Hu CA, Yu J, Mei JM, Valle D, Phang JM (2001) Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen species. Cancer Res 61:1810–1815

    PubMed  CAS  Google Scholar 

  • Geraghty MT, Vaughn D, Nicholson AJ, Lin WW, Jimenez-Sanchez G, Obie C, Flynn MP, Valle D, Hu CA (1998) Mutations in the Delta1-pyrroline 5-carboxylate dehydrogenase gene cause type II hyperprolinemia. Hum Mol Genet 7:1411–1415

    Article  PubMed  CAS  Google Scholar 

  • Gu D, Zhou Y, Kallhoff V, Baban B, Tanner JJ, Becker DF (2004) Identification and characterization of the DNA-binding domain of the multifunctional PutA flavoenzyme. J Biol Chem 279:31171–31176

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Holden HM, Raushel FM (2001) Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu Rev Biochem 70:149–180

    Article  PubMed  CAS  Google Scholar 

  • Inagaki E, Ohshima N, Takahashi H, Kuroishi C, Yokoyama S, Tahirov TH (2006) Crystal structure of Thermus thermophilus Delta1-pyrroline-5-carboxylate dehydrogenase. J Mol Biol 362:490–501

    Article  PubMed  CAS  Google Scholar 

  • Inagaki E, Ohshima N, Sakamoto K, Babayeva ND, Kato H, Yokoyama S, Tahirov TH (2007) New insights into the binding mode of coenzymes: structure of Thermus thermophilus [Delta]1-pyrroline-5-carboxylate dehydrogenase complexed with NADP+. Acta Crystallogr F63:462–465

    CAS  Google Scholar 

  • Lamb AL, Newcomer ME (1999) The structure of retinal dehydrogenase type II at 2.7 A resolution: implications for retinal specificity. Biochemistry 38:6003–6011

    Article  PubMed  CAS  Google Scholar 

  • Larson JD, Jenkins JL, Schuermann JP, Zhou Y, Becker DF, Tanner JJ (2006) Crystal structures of the DNA-binding domain of Escherichia coli proline utilization A flavoprotein and analysis of the role of Lys9 in DNA recognition. Protein Sci 15:1–12

    Article  CAS  Google Scholar 

  • Lee YH, Nadaraia S, Gu D, Becker DF, Tanner JJ (2003) Structure of the proline dehydrogenase domain of the multifunctional PutA flavoprotein. Nat Struct Biol 10:109–114

    Article  PubMed  CAS  Google Scholar 

  • Lewis ML, Rowe CJ, Sewald N, Sutherland JD, Wilson EJ, Wright MC (1993) The effect of pH on the solution structure of delta-1-pyrroline-2-carboxylic acid as revealed by NMR and electrospray mass spectroscopy. Bioorg Med Chem Lett 3:1193–1196

    Article  CAS  Google Scholar 

  • Liu Y, Borchert GL, Donald SP, Surazynski A, Hu CA, Weydert CJ, Oberley LW, Phang JM (2005) MnSOD inhibits proline oxidase-induced apoptosis in colorectal cancer cells. Carcinogenesis 26:1335–1342

    Article  PubMed  CAS  Google Scholar 

  • Liu ZJ, Sun YJ, Rose J, Chung YJ, Hsiao CD, Chang WR, Kuo I, Perozich J, Lindahl R, Hempel J et al. (1997) The first structure of an aldehyde dehydrogenase reveals novel interactions between NAD and the Rossmann fold. Nat Struct Biol 4:317–326

    Article  PubMed  CAS  Google Scholar 

  • Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D (1999) Detecting protein function and protein-protein interactions from genome sequences. Science 285:751–753

    Article  PubMed  CAS  Google Scholar 

  • Markova M, Peneff C, Hewlins MJ, Schirmer T, John RA (2005) Determinants of substrate specificity in omega-aminotransferases. J Biol Chem 280:36409–36416

    Article  PubMed  CAS  Google Scholar 

  • Meng Z, Lou Z, Liu Z, Li M, Zhao X, Bartlam M, Rao Z (2006) Crystal structure of human pyrroline-5-carboxylate reductase. J Mol Biol 359:1364–1377

    Article  PubMed  CAS  Google Scholar 

  • Menzel R, Roth J (1981) Regulation of genes for proline utilization in Salmonella typhimurium: autogenous repression by the putA gene product. J Mol Biol 148:21–44

    Article  PubMed  CAS  Google Scholar 

  • Miles EW, Rhee S, Davies DR (1999) The molecular basis of substrate channeling. J Biol Chem 274:12193–12196

    Article  PubMed  CAS  Google Scholar 

  • Nocek B, Chang C, Li H, Lezondra L, Holzle D, Collart F, Joachimiak A (2005) Crystal structures of delta1-pyrroline-5-carboxylate reductase from human pathogens Neisseria meningitides and Streptococcus pyogenes. J Mol Biol 354:91–106

    Article  PubMed  CAS  Google Scholar 

  • Ostrovsky de Spicer P, O’Brien K, Maloy S (1991) Regulation of proline utilization in Salmonella typhimurium: a membrane-associated dehydrogenase binds DNA in vitro. J Bacteriol 173:211–219

    Google Scholar 

  • Page R, Nelson MS, von Delft F, Elsliger MA, Canaves JM, Brinen LS, Dai X, Deacon AM, Floyd R, Godzik A et al. (2004) Crystal structure of gamma-glutamyl phosphate reductase (TM0293) from Thermotoga maritima at 2.0 A resolution. Proteins 54:157–161

    Article  PubMed  CAS  Google Scholar 

  • Pandhare J, Cooper SK, Phang JM (2006) Proline oxidase, a proapoptotic gene, is induced by troglitazone: evidence for both peroxisome proliferator-activated receptor gamma-dependent and -independent mechanisms. J Biol Chem 281:2044–2052

    Article  PubMed  CAS  Google Scholar 

  • Phang JM (1985) The regulatory functions of proline and pyrroline-5-carboxylic acid. Curr Top Cell Reg 25:92–132

    Google Scholar 

  • Phang JM, Hu CA, Valle D (2001) Disorders of proline and hydroxyproline metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) Metabolic and molecular basis of inherited disease. McGraw Hill, New York, pp 1821–1838

    Google Scholar 

  • Rivera A, Maxwell SA (2005) The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. J Biol Chem 280:29346–29354

    Article  PubMed  CAS  Google Scholar 

  • Saktor B (1976) Biochemical adaptations for flight in the insect. Biochem Soc Symp 41:111–131

    Google Scholar 

  • Schreiter ER, Drennan CL (2007) Ribbon–helix–helix transcription factors: variations on a theme. Nat Rev Microbiol 5:710–720

    Article  PubMed  CAS  Google Scholar 

  • Shah SA, Shen BW, Brunger AT (1997) Human ornithine aminotransferase complexed with l-canaline and gabaculine: structural basis for substrate recognition. Structure 5:1067–1075

    Article  PubMed  CAS  Google Scholar 

  • Shen BW, Hennig M, Hohenester E, Jansonius JN, Schirmer T (1998) Crystal structure of human recombinant ornithine aminotransferase. J Mol Biol 277:81–102

    Article  PubMed  CAS  Google Scholar 

  • Sophos NA, Vasiliou V (2003) Aldehyde dehydrogenase gene superfamily: the 2002 update. Chem Biol Interact 143–144:5–22

    Article  PubMed  CAS  Google Scholar 

  • Storici P, Capitani G, Muller R, Schirmer T, Jansonius JN (1999) Crystal structure of human ornithine aminotransferase complexed with the highly specific and potent inhibitor 5-fluoromethylornithine. J Mol Biol 285:297–309

    Article  PubMed  CAS  Google Scholar 

  • Surber MW, Maloy S (1998) The PutA protein of Salmonella typhimurium catalyzes the two steps of proline degradation via a leaky channel. Arch Biochem Biophys 354:281–287

    Article  PubMed  CAS  Google Scholar 

  • Tritsch D, Mawlawi H, Biellmann JF (1993) Mechanism-based inhibition of proline dehydrogenase by proline analogues. Biochim Biophys Acta 1202:77–81

    PubMed  CAS  Google Scholar 

  • Tsuge H, Kawakami R, Sakuraba H, Ago H, Miyano M, Aki K, Katunuma N, Ohshima T (2005) Crystal structure of a novel FAD-, FMN-, and ATP-containing l-proline dehydrogenase complex from Pyrococcus horikoshii. J Biol Chem 280:31045–31049

    Article  PubMed  CAS  Google Scholar 

  • Vilchez S, Manzanera M, Ramos JL (2000a) Control of expression of divergent Pseudomonas putida put promoters for proline catabolism. Appl Environ Microbiol 66:5221–5225

    Article  PubMed  CAS  Google Scholar 

  • Vilchez S, Molina L, Ramos C, Ramos JL (2000b) Proline catabolism by Pseudomonas putida: cloning, characterization, and expression of the put genes in the presence of root exudates. J Bacteriol 182:91–99

    Article  PubMed  CAS  Google Scholar 

  • White TA, Krishnan N, Becker DF, Tanner JJ (2007) Structure and kinetics of monofunctional proline dehydrogenase from Thermus thermophilus. J Biol Chem 282:14316–14327

    Article  PubMed  CAS  Google Scholar 

  • White TA, W. H. Johnson, J, Whitman CP, Tanner JJ (2008) Structural basis for the inactivation of Thermus thermophilus proline dehydrogenase by N-propargylglycine. Biochemistry (accepted)

  • Zhang M, White TA, Schuermann JP, Baban BA, Becker DF, Tanner JJ (2004a) Structures of the Escherichia coli PutA proline dehydrogenase domain in complex with competitive inhibitors. Biochemistry 43:12539–12548

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Zhang M, Zhu W, Zhou Y, Wanduragala S, Rewinkel D, Tanner JJ, Becker DF (2007) Redox-induced changes in flavin structure and roles of flavin N(5) and the ribityl 2′-OH group in regulating PutA-membrane binding. Biochemistry 46:483–491

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Zhou Y, Becker DF (2004b) Regulation of PutA-membrane associations by flavin adenine dinucleotide reduction. Biochemistry 43:13165–13174

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Larson JD, Bottoms CA, Arturo E, Henzl MT, Jenkins JL, Nix JC, Becker DF, Tanner JJ (2008a) Structural basis of transcriptional regulation of the put regulon in Escherichia coli (submitted)

  • Zhou Y, Zhu W, Bellur PS, Rewinkel D, Becker DF (2008b) Direct linking of metabolism and gene expression in the proline utilization A protein from Escherichia coli. Amino Acids. doi:10.1007/s00726-008-0053-6

  • Zhu W, Becker DF (2003) Flavin redox state triggers conformational changes in the PutA protein from Escherichia coli. Biochemistry 42:5469–5477

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Gincherman Y, Docherty P, Spilling CD, Becker DF (2002) Effects of proline analog binding on the spectroscopic and redox properties of PutA. Arch Biochem Biophys 408:131–136

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to express my sincere gratitude to my former and current students and postdoctoral associates who have contributed to the work reviewed here: Dr. Tommi White, Dr. John Larson, Min Zhang, Dr. Jermaine Jenkins, Dr. Jonathan Schuermann, Dr. Yong-Huan Lee and Shorena Nadaraia. I also thank Prof. Donald Becker and his students for their crucial contributions to this research. Finally, I thank Dr. David Valle for insightful discussions about substrate specificities of human PRODHs. This research was supported by NIH grant GM065546. Part of the research reviewed here was performed at Advanced Light Source beamline 4.2.2. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098 at Lawrence Berkeley National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Tanner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanner, J.J. Structural biology of proline catabolism. Amino Acids 35, 719–730 (2008). https://doi.org/10.1007/s00726-008-0062-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0062-5

Keywords

Navigation