Skip to main content
Log in

Understanding cerebral L-lysine metabolism: the role of L-pipecolate metabolism in Gcdh-deficient mice as a model for glutaric aciduria type I

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Inherited deficiencies of the L-lysine catabolic pathway cause glutaric aciduria type I and pyridoxine-dependent epilepsy. Dietary modulation of cerebral L-lysine metabolism is thought to be an important therapeutic intervention for these diseases. To better understand cerebral L-lysine degradation, we studied in mice the two known catabolic routes — pipecolate and saccharopine pathways — using labeled stable L-lysine and brain peroxisomes purified according to a newly established protocol. Experiments with labeled stable L-lysine show that cerebral L-pipecolate is generated along two pathways: i) a minor proportion retrograde after ε-deamination of L-lysine along the saccharopine pathway, and ii) a major proportion anterograde after α-deamination of L-lysine along the pipecolate pathway. In line with these findings, we observed only little production of saccharopine in the murine brain. L-pipecolate oxidation was only detectable in brain peroxisomes, but L-pipecolate oxidase activity was low (7 ± 2μU/mg protein). In conclusion, L-pipecolate is a major degradation product from L-lysine in murine brain generated by α-deamination of this amino acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

α-AAA:

α-aminoadipate

α-AASA:

α-aminoadipate semialdehyde

AADAT:

α-aminoadipate aminotransferase

AASDH:

α-aminoadipate semialdehyde dehydrogenase

AASS:

α-aminoadipate semialdehyde synthase

BBB:

blood brain barrier

Clofibrate:

2-(4-chlorophenoxy)-2-methylpropionic acid ethyl ester

D-AAO:

D-amino acid oxidase

DHTKD1:

E1 subunit of an OGDHc-like complex

GA:

glutaric acid

GA-I:

glutaric aciduria type I

GCDH:

glutaryl-CoA dehydrogenase

GC/MS:

gas chromatography mass spectrometry

HMP:

heavy mitochondrial pellet

IF:

intermediate fraction of the cerebral sucrose gradient

IF:

interphase of the liver density gradient

i.p.:

intraperitoneal

LC-MS/MS:

liquid chromatography tandem mass spectrometry

LL:

lower layer of the cerebral sucrose gradient

L-PIPOX:

L-pipecolate oxidase

MPE:

molar percentage excess

N:

nuclear pellet

PBS:

phosphate-buffered saline

PPARα:

peroxisome proliferator-activated receptor-alpha

PMP-70:

peroxisomal membrane protein-70

pPMS:

pooled post mitochondrial supernatant

pPNS:

pooled post nuclear supernatant

PYCR1:

pyrroline-5-carboxylate reductase

P6C:

Δ1-piperideine-6-carboxylate

SDS-PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

SF:

suspension fraction

(s)LMP:

(suspended) light mitochondrial pellet of the liver

(s)LMP 1 or 2:

(suspended) light mitochondrial pellet 1 or 2 of the brain

TCA-cycle:

tricarboxylic acid-cycle

UL:

upper layer of the cerebral sucrose gradient

UQCRC2:

subunit of the bc 1 complex

3-OH-GA:

3-hydroxyglutaric acid

References

  • Blemings KP, Crenshaw TD, Swick RW, Benevenga NJ (1994) Lysine-alpha-ketoglutarate reductase and saccharopine dehydrogenase are located only in the mitochondrial matrix in rat liver. J Nutr 124:1215–1221

    CAS  PubMed  Google Scholar 

  • Chang YF (1976) Pipecolic acid pathway: the major lysine metabolic route in the rat brain. Biochem Biophys Res Commun 69:174–180

    Article  CAS  PubMed  Google Scholar 

  • Cimini AM, Moreno S, Giorgi M, Serafini B, Cerú MP (1993) Purification of peroxisomal fraction from rat brain. Neurochem Int 23:249–260

    Article  CAS  PubMed  Google Scholar 

  • Danhauser K, Sauer SW, Haack TB et al (2012) DHTKD1 mutations cause 2-aminoadipic and 2-oxoadipic aciduria. Am J Hum Genet 91:1082–1087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goodman SI, Markey SP, Moe PG, Miles BS, Teng CC (1975) Glutaric aciduria; a “new” disorder of amino acid metabolism. Biochem Med 12:12–21

    Article  CAS  PubMed  Google Scholar 

  • Higashino K, Fujioka M, Yamamura Y (1971) The conversion of L-lysine to saccharopine and alpha-aminoadipate in mouse. Arch Biochem Biophys 142:606–614

    Article  CAS  PubMed  Google Scholar 

  • Horie S, Ogawa S, Suga T (1989) Identity of acyl-CoA oxidase with glutaryl-CoA oxidase. Life Sci 44:1141–1148

    Article  CAS  PubMed  Google Scholar 

  • Ijlst L, de Kromme I, Oostheim W, Wanders RJ (2000) Molecular cloning and expression of human L-pipecolate oxidase. Biochem Biophys Res Commun 270:1101–1105

    Article  CAS  PubMed  Google Scholar 

  • Kok RM, Kaster L, de Jong AP, Poll-Thé B, Saudubray JM, Jakobs C (1987) Stable isotope dilution analysis of pipecolic acid in cerebrospinal fluid, plasma, urine, and amniotic fluid using electron capture negative ion mass fragmentography. Clin Chim Acta 168:143–152

    Article  CAS  PubMed  Google Scholar 

  • Kovacs WJ, Faust PL, Keller GA, Krisans SK (2001) Purification of brain peroxisomes and localization of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Eur J Biochem 268:4850–4859

    Article  CAS  PubMed  Google Scholar 

  • Lazarow PB, De Duve C (1976) A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A 73:2043–2046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lazo O, Singh AK, Singh I (1991) Postnatal development and isolation of peroxisomes from brain. J Neurochem 56:1343–1353

    Article  CAS  PubMed  Google Scholar 

  • Leighton F, Coloma L, Koenig C (1975) Structure, composition, physical properties, and turnover of proliferated peroxisomes. A study of the trophic effects of Su-13437 on rat liver. J Cell Biol 67:281–309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mihalik SJ, Rhead WJ (1989) L-pipecolic acid oxidation in the rabbit and cynomolgus monkey. Evidence for differing organellar locations and cofactor requirements in each species. J Biol Chem 264:2509–2517

    CAS  PubMed  Google Scholar 

  • Mihalik SJ, Rhead WJ (1991) Species variation in organellar location and activity of L-pipecolic acid oxidation in mammals. J Comp Physiol B 160:671–676

    Article  CAS  PubMed  Google Scholar 

  • Mills PB, Struys E, Jakobs C et al (2006) Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat Med 12:307–309

    Article  CAS  PubMed  Google Scholar 

  • Murthy SN, Janardanasarma MK (1999) Identification of L-amino acid/L-lysine alpha-amino oxidase in mouse brain. Mol Cell Biochem 197:13–23

    Article  CAS  PubMed  Google Scholar 

  • Sacksteder KA, Biery BJ, Morrell JC et al (2000) Identification of the alpha-aminoadipic semialdehyde synthase gene, which is defective in familial hyperlysinemia. Am J Hum Genet 66:1736–1743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sauer SW, Opp S, Hoffmann GF, Koeller DM, Okun JG, Kölker S (2011) Therapeutic modulation of cerebral L-lysine metabolism in a mouse model for glutaric aciduria type I. Brain 134:157–170

    Article  PubMed  Google Scholar 

  • Singh H, Usher S, Poulos A (1989) Mitochondrial and peroxisomal beta-oxidation of stearic and lignoceric acids by rat brain. J Neurochem 53:1711–1718

    Article  CAS  PubMed  Google Scholar 

  • Struys EA, Jakobs C (2010) Metabolism of lysine in alpha-aminoadipic semialdehyde dehydrogenase-deficient fibroblasts: evidence for an alternative pathway of pipecolic acid formation. FEBS Lett 584:181–186

    Article  CAS  PubMed  Google Scholar 

  • Struys EA, Jansen EE, Salomons GS (2014) Human pyrroline-5-carboxylate reductase (PYCR1) acts on Δ1-piperideine-6-carboxylate generating L-pipecolic acid. J Inherit Metab Dis 37:327–332

    Article  CAS  PubMed  Google Scholar 

  • Vamecq J, Van Hoof F (1984) Implication of a peroxisomal enzyme in the catabolism of glutaryl-CoA. Biochem J 221:203–211

    PubMed Central  CAS  PubMed  Google Scholar 

  • van Veldhoven PP, Vanhove G, Assselberghs S, Eyssen HJ, Mannaerts GP (1992) Substrate specificities of rat liver peroxisomal acyl-CoA oxidases: palmitoyl-CoA oxidase (inducible acyl-CoA oxidase), pristanoyl-CoA oxidase (non-inducible acyl-CoA oxidase), and trihydroxycoprostanoyl-CoA oxidase. J Biol Chem 267:20065–20074

    PubMed  Google Scholar 

  • Völkl A, Fahimi HD (1985) Isolation and characterization of peroxisomes from the liver of normal untreated rats. Eur J Biochem 149:257–265

    Article  PubMed  Google Scholar 

  • Wanders BJ, Denis SW, Dacremont G (1993) Studies on the substrate specificity of the inducible and non-inducible acyl-CoA oxidases from rat kidney peroxisomes. J Biochem 113:577–582

    CAS  PubMed  Google Scholar 

  • Zaar K, Angermüller S, Völkl A, Fahimi HD (1986) Pipecolic acid is oxidized by renal and hepatic peroxisomes. Implications for Zellweger’s cerebro-hepato-renal syndrome (CHRS). Exp Cell Res 164:267–271

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Christian Körner (Division of Inherited Metabolic Diseases, University Children’s Hospital, Heidelberg, Germany) for his kind gift of a primary antibody, Pamela M. Okun for her valuable comments on the manuscript (Center for Rare Diseases, Medical Center University of Heidelberg, Germany) and Kathrin V. Schmidt as well as Patrik Feyh (Metabolic Laboratory, University Children’s Hospital, Heidelberg, Germany) for their excellent technical assistance. We are grateful to Claus-Dieter Langhans (Metabolic Laboratory, University Children’s Hospital, Heidelberg, Germany) for critical discussion of our manuscript.

Conflict of interest

None.

Animal rights

All institutional and national guidelines for the care and use of laboratory animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen G. Okun.

Additional information

Communicated by: Robert Steiner

Sven W. Sauer and Jürgen G. Okun contributed equally to the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Fractionation protocol for the isolation of murine liver (a) and brain (b) peroxisomal subpopulations. For further description see materials and methods. N, nuclear pellet; pPNS, pooled post nuclear supernatant; HMP, heavy mitochondrial pellet; pPMS, pooled post mitochondrial supernatant; (s)LMP, (suspended) light mitochondrial pellet of the liver; IF + UL, intermediate fraction and upper layer of the cerebral sucrose gradient; Pellet + LL, pellet and lower layer of the cerebral sucrose gradient; SF, suspension fraction; LMP 1 or 2, light mitochondrial pellet 1 or 2 of the brain; sLMP 2, suspended LMP 2. Buffer A (5 mM MOPS, 0.25 M sucrose, 1 mM EDTA, 0.1 % (v/v) ethanol; pH 7.4); buffer B (5 mM MOPS, 0.85 M sucrose, 1 mM EDTA, 0.1 % (v/v) ethanol; pH 7.4); buffer C (5 mM MOPS, 1 mM EDTA, 0.1 % (v/v) ethanol; pH 7.4); buffer D (10 mM TRIS, 0.25 M sucrose, 1 mM EDTA, 0.1 % (v/v) ethanol; pH 7.4). (PPT 161 kb)

Supplemental Fig. 2

Distribution, purity and enrichment of liver (a) and brain (b) peroxisomes. Liver and brain gradient fractions were separated by SDS-PAGE, proteins blotted to nitrocellulose and investigated with antibodies against PMP-70, catalase, UQCRC2 and Golgi 58 K. Brain peroxisomes banded between fraction 2 to 4 and liver peroxisomes were nearly evenly distributed. The purest brain peroxisomal subpopulation is located in fraction 4, whereas mitochondria-depleted liver peroxisomal subpopulations mostly dispersed between fraction 5 to the interphase (PPTX 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Posset, R., Opp, S., Struys, E.A. et al. Understanding cerebral L-lysine metabolism: the role of L-pipecolate metabolism in Gcdh-deficient mice as a model for glutaric aciduria type I. J Inherit Metab Dis 38, 265–272 (2015). https://doi.org/10.1007/s10545-014-9762-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-014-9762-z

Keywords

Navigation