Skip to main content

Advertisement

Log in

Natural Resources Research Publications on Geochemical Anomaly and Mineral Potential Mapping, and Introduction to the Special Issue of Papers in These Fields

  • Review Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

In its 26 years of existence, the journal of Natural Resources Research (NRR) has published and continues to publish papers on geochemical anomaly and mineral potential mapping. This is consistent with its aims and scope to publish quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Over the years, NRR has contributed significantly more to the publication of developments in mineral potential mapping and notably less to the publication of developments in geochemical anomaly mapping. In more detail, NRR has contributed significantly more to the publication of research on development of robust quantitative methods for analysis and synthesis of spatial evidence of mineral potential but notably less to the publication of research on development of geologically focused models of mineral potential. The editorship of NRR recognizes the latter as a challenge to promote further research on development of numerically robust as well as geologically focused mineral potential models, and this special issue is a major initiative in response to that challenge. The recent inclusion of Natural Resources Research for coverage by the Clarivate Analytics (formerly the Institute for Scientific Information) in the Science Citation Index Expanded™ and Journal Citation Reports® (JCR) Science Edition will help make Natural Resources Research meet that challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

From NRR

  • Agterberg, F. P. (1992). Combining indicator patterns in weights of evidence modeling for resource evaluation. Nonrenewable Resources, 1, 39–50.

    Article  Google Scholar 

  • Agterberg, F. P. (1993). Calculation of the variance of mean values for blocks in regional resource evaluation studies. Nonrenewable Resources, 2, 312–324.

    Article  Google Scholar 

  • Agterberg, F. (2011). A modified weights-of-evidence method for regional mineral resource estimation. Natural Resources Research, 20, 95–101.

    Article  Google Scholar 

  • Agterberg, F. P., & Bonham-Carter, G. F. (2005). Measuring the performance of mineral-potential maps. Natural Resources Research, 14, 1–17.

    Article  Google Scholar 

  • Agterberg, F. P., & Cheng, Q. (2002). Conditional independence test for weights-of-evidence modeling. Natural Resources Research, 11, 249–255.

    Article  Google Scholar 

  • An, P., Moon, W. M., & Bonham-Carter, G. F. (1994a). An object-oriented knowledge representation structure for exploration data integration. Nonrenewable Resources, 3, 132–145.

    Article  Google Scholar 

  • An, P., Moon, W. M., & Bonham-Carter, G. F. (1994b). Uncertainty management in integration of exploration data using the belief function. Nonrenewable Resources, 3, 60–71.

    Article  Google Scholar 

  • Asadi, H. H., Sansoleimani, A., Fatehi, M., & Carranza, E. J. M. (2016). An AHP–TOPSIS predictive model for district-scale mapping of porphyry Cu–Au potential: A case study from Salafchegan Area (Central Iran). Natural Resources Research, 25, 417–429.

    Article  Google Scholar 

  • Behnia, P. (2007). Application of radial basis functional link networks to exploration for Proterozoic mineral deposits in Central Iran. Natural Resources Research, 16, 147–155.

    Article  Google Scholar 

  • Bougrain, L., Gonzalez, M., Bouchot, V., Cassard, D., Lips, A. L. W., Alexandre, F., et al. (2003). Knowledge recovery for continental-scale mineral exploration by neural networks. Natural Resources Research, 12, 173–181.

    Article  Google Scholar 

  • Brown, W. M., Gedeon, T. D., & Groves, D. I. (2003a). Use of noise to augment training data: A neural network method of mineral–potential mapping in regions of limited known deposit examples. Natural Resources Research, 12, 141–152.

    Article  Google Scholar 

  • Brown, W. M., Groves, D. I., & Gedeon, T. D. (2003b). Use of fuzzy membership input layers to combine subjective geological knowledge and empirical data in a neural network method for mineral-potential mapping. Natural Resources Research, 12, 183–200.

    Article  Google Scholar 

  • Carranza, E. J. M. (2004). Weights of evidence modeling of mineral potential: A case study using small number of prospects, Abra, Philippines. Natural Resources Research, 13, 173–187.

    Article  Google Scholar 

  • Carranza, E. J. M. (2015). Data-driven evidential belief modeling of mineral potential using few prospects and evidence with missing values. Natural Resources Research, 24, 291–304.

    Article  Google Scholar 

  • Carranza, E. J. M. (2017). Geochemical mineral exploration: Should we use enrichment factors or log-ratios? Natural Resources Research. doi:10.1007/s11053-016-9318-z.

    Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2000). Geologically constrained probabilistic mapping of gold potential, Baguio District, Philippines. Natural Resources Research, 9, 237–253.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2001a). Geologically constrained fuzzy mapping of gold mineralization potential, Baguio District, Philippines. Natural Resources Research, 10, 125–136.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2002a). Where are porphyry copper deposits spatially localized? A case study in Benguet Province, Philippines. Natural Resources Research, 11, 45–59.

    Article  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2016). Data-driven predictive modeling of mineral prospectivity using Random Forests: A case study in Catanduanes Island (Philippines). Natural Resources Research, 25, 35–50.

    Article  Google Scholar 

  • Carranza, E. J. M., Mangaoang, J. C., & Hale, M. (1999). Application of mineral exploration models and GIS to generate mineral potential maps as input for optimum land-use planning in the Philippines. Natural Resources Research, 8, 165–173.

    Article  Google Scholar 

  • Carranza, E. J. M., Woldai, T., & Chikambwe, E. M. (2005). Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi District, Zambia. Natural Resources Research, 14, 47–63.

    Article  Google Scholar 

  • Chen, J., Wang, G., & Hou, C. (2005). Quantitative prediction and evaluation of mineral resources based on GIS: A case study in Sanjiang region, southwestern China. Natural Resources Research, 15, 285–294.

    Google Scholar 

  • Chen, Y., Zhao, P., Chen, J., & Liu, J. (2001). Application of the geo-anomaly unit concept in quantitative delineation and assessment of gold ore targets in western Shandong uplift terrain, Eastern China. Natural Resources Research, 10, 35–49.

    Article  Google Scholar 

  • Cheng, Q. (1996). Asymmetric fuzzy relation analysis method for ranking geoscience variables. Nonrenewable Resources, 5, 169–180.

    Article  Google Scholar 

  • Cheng, Q., & Agterberg, F. P. (1999). Fuzzy weights of evidence method and its application in mineral potential mapping. Natural Resources Research, 8, 27–35.

    Article  Google Scholar 

  • Cheng, Q., Agterberg, F. P., & Bonham-Carter, G. F. (1996). Fractal pattern integration for mineral potential estimation. Nonrenewable Resources, 5, 117–130.

    Article  Google Scholar 

  • Cheng, Q., Xu, Y., & Grunsky, E. (2000). Integrated spatial and spectrum method for geochemical anomaly separation. Natural Resources Research, 9, 43–52.

    Article  Google Scholar 

  • Chung, C. J., & Fabbri, A. G. (1993). The representation of geoscience information for data integration. Nonrenewable Resources, 2, 122–139.

    Article  Google Scholar 

  • Costa, J. F., & Koppe, J. C. (1999). Assessing uncertainty associated with the delineation of geochemical anomalies. Natural Resources Research, 8, 59–67.

    Article  Google Scholar 

  • Daneshfar, B., Desrochers, A., & Budkewitsch, P. (2006). Mineral-potential mapping for MVT deposits with limited data sets using Landsat data and geological evidence in the Borden Basin, Northern Baffin Island, Nunavut, Canada. Natural Resources Research, 15, 129–149.

    Article  Google Scholar 

  • De Araújo, C. C., & Macedo, A. B. (2002). Multicriteria geologic data analysis for mineral favorability mapping: Application to a metal sulphide mineralized area, Ribeira Valley Metallogenic Province, Brazil. Natural Resources Research, 11, 29–43.

    Article  Google Scholar 

  • Deng, M. (2009). A conditional dependence adjusted weights of evidence model. Natural Resources Research, 18, 249–258.

    Article  Google Scholar 

  • De Quadros, T. F. P., Koppe, J. C., Strieder, A. J., & Costa, J. F. C. L. (2006). Mineral-potential mapping: A comparison of weights-of-evidence and fuzzy methods. Natural Resources Research, 15, 49–65.

    Article  Google Scholar 

  • Duarte Campos, L., Machado de Souza, S., Alves de Sordi, D., Tavares, F. M., Klein, E. L., & Dos Santos Lopes, E. C. (2017). Predictive mapping of prospectivity in the Gurupi Orogenic Gold Belt, north–northeast Brazil: An example of district-scale mineral system approach to exploration targeting. Natural Resources Research. doi:10.1007/s11053-016-9320-5.

    Google Scholar 

  • Elliott, B. A., Verma, R., & Kyle, J. R. (2016). Prospectivity modeling for Cambrian-Ordovician hydraulic fracturing sand resources around the Llano Uplift, Central Texas. Natural Resources Research, 25, 389–415.

    Article  Google Scholar 

  • El-Makky, A. M., & Sediek, K. N. (2012). Stream sediments geochemical exploration in the northwestern part of Wadi Allaqi Area, South Eastern Desert, Egypt. Natural Resources Research, 21, 95–115.

    Article  Google Scholar 

  • Fabbri, A., & Chung, C. J. (2008). On blind tests and spatial prediction models. Natural Resources Research, 17, 107–118.

    Article  Google Scholar 

  • Feizi, F., Karbalaei-Ramezanali, A., & Tusi, H. (2017). Mineral potential mapping via TOPSIS with hybrid AHP-Shannon entropy weighting of evidence: A case study for porphyry-Cu, Farmahin area, Markazi Province, Iran. Natural Resources Research. doi:10.1007/s11053-017-9338-3.

    Google Scholar 

  • Ford, A., Miller, J. M., & Mol, A. G. (2016). A comparative analysis of weights of evidence, evidential belief functions, and fuzzy logic for mineral potential mapping using incomplete data at the scale of investigation. Natural Resources Research, 25, 19–33.

    Article  Google Scholar 

  • Geranian, H., Tabatabaei, S. H., Asadi, H. H., & Carranza, E. J. M. (2016). Application of discriminant analysis and support vector machine in mapping gold potential areas for further drilling in the Sari-Gunay gold deposit, NW Iran. Natural Resources Research, 25, 145–159.

    Article  Google Scholar 

  • Goossens, M. A. (1993). Integrated analysis of Landsat TM, airborne magnetic, and radiometric data, as an exploration tool for granite-related mineralization, Salamanca province, Western Spain. Nonrenewable Resources, 2, 14–30.

    Article  Google Scholar 

  • Hariharan, S., Tirodkar, S., Porwal, A., Bhattacharya, A., & Joly, A. (2017). Random forest-based prospectivity modelling of greenfield terrains using sparse deposit data: An example from the Tanami Region, Western Australia. Natural Resources Research. doi:10.1007/s11053-017-9335-6.

    Google Scholar 

  • Harris, D., & Pan, G. (1999). Mineral favorability mapping: A comparison of artificial neural networks, logistic regression, and discriminant analysis. Natural Resources Research, 8, 93–109.

    Article  Google Scholar 

  • Harris, D., Zurcher, L., Stanley, M., Marlow, J., & Pan, G. (2003). A comparative analysis of favorability mappings by weights of evidence, probabilistic neural networks, discriminant analysis, and logistic regression. Natural Resources Research, 12, 241–255.

    Article  Google Scholar 

  • Harris, J. R., Lemkow, D., Jefferson, C., Wright, D., & Falck, H. (2008). Mineral potential modelling for the greater Nahanni ecosystem using GIS based analytical methods. Natural Resources Research, 17, 51–78.

    Article  Google Scholar 

  • Harris, J. R., Wilkinson, L., Heather, K., Fumerton, S., Bernier, M. A., Ayer, J., et al. (2001). Application of GIS processing techniques for producing mineral prospectivity maps—A case study: Mesothermal Au in the Swayze Greenstone Belt, Ontario, Canada. Natural Resources Research, 10, 91–124.

    Article  Google Scholar 

  • He, J., Yao, S., Zhang, Z., & You, G. (2013). Complexity and productivity differentiation models of metallogenic indicator elements in rocks and supergene media around Daijiazhuang Pb–Zn deposit in Dangchang County, Gansu Province. Natural Resources Research, 22, 19–36.

    Article  Google Scholar 

  • Lusty, P. A. J., Scheib, C., Gunn, A. G., & Walker, A. S. D. (2012). Reconnaissance-scale prospectivity analysis for gold mineralisation in the Southern Uplands-Down-Longford Terrane, Northern Ireland. Natural Resources Research, 21, 359–382.

    Article  Google Scholar 

  • Luz, F., Mateus, A., Matos, J. X., & Gonçalves, M. A. (2014). Cu- and Zn-soil anomalies in the NE border of the South Portuguese Zone (Iberian Variscides, Portugal) identified by multifractal and geostatistical analyses. Natural Resources Research, 23, 195–215.

    Article  Google Scholar 

  • McKay, G., & Harris, J. R. (2016). Comparison of the data-driven random forests model and a knowledge-driven method for mineral prospectivity mapping: A case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada. Natural Resources Research, 25, 125–143.

    Article  Google Scholar 

  • McLaren, G. P. (1992). Classifying mineral potential in support of land-use policy decisions in British Columbia, Canada. Nonrenewable Resources, 1, 85–96.

    Article  Google Scholar 

  • Mejía-Herrera, P., Royer, J. J., Caumon, G., & Cheilletz, A. (2015). Curvature attribute from surface-restoration as predictor variable in Kupferschiefer copper potentials. Natural Resources Research, 24, 275–290.

    Article  Google Scholar 

  • Mihalasky, M. J., & Bonham-Carter, G. F. (2001). Lithodiversity and its spatial association with metallic mineral sites, Great Basin of Nevada. Natural Resources Research, 10, 209–226.

    Article  Google Scholar 

  • Mutele, L., Billay, A., & Hunt, J. P. (2017). Knowledge-driven prospectivity mapping for granite-related polymetallic Sn–F–(REE) mineralization, Bushveld Igneous Complex, South Africa. Natural Resources Research. doi:10.1007/s11053-017-9325-8.

    Google Scholar 

  • Nykänen, V. (2008). Radial basis functional link nets used as a prospectivity mapping tool for orogenic gold deposits within the Central Lapland Greenstone Belt, Northern Fennoscandian Shield. Natural Resources Research, 17, 29–48.

    Article  Google Scholar 

  • Nykänen, V., Niiranen, T., Molnár, F., Lahti, I., Korhonen, K., Cook, N., et al. (2017). Optimizing a knowledge-driven prospectivity model for gold deposits within Peräpohja Belt, northern Finland. Natural Resources Research. doi:10.1007/s11053-016-9321-4.

    Google Scholar 

  • Nykänen, V., & Ojala, V. J. (2007). Spatial analysis techniques as successful mineral-potential mapping tools for orogenic gold deposits in the Northern Fennoscandian Shield, Finland. Natural Resources Research, 16, 85–92.

    Article  Google Scholar 

  • Nykänen, V., & Raines, G. L. (2006). Quantitative analysis of scale of aeromagnetic data raises questions about geologic-map scale. Natural Resources Research, 15, 213–222.

    Article  Google Scholar 

  • Oh, H. J., & Lee, S. (2010). Application of artificial neural network for gold–silver deposits potential mapping: A case study of Korea. Natural Resources Research, 19, 103–124.

    Article  Google Scholar 

  • Paganelli, F., Richards, J. P., & Grunsky, E. C. (2002). Integration of structural, gravity, and magnetic data using the weights of evidence method as a tool for kimberlite exploration in the Buffalo Head Hills, Northern Central Alberta, Canada. Natural Resources Research, 11, 219–236.

    Article  Google Scholar 

  • Pan, G. (1993a). Indicator favorability theory for mineral potential mapping. Nonrenewable Resources, 2, 292–311.

    Article  Google Scholar 

  • Pan, G., & Porterfield, B. (1995). Large-scale mineral potential estimation for blind precious metal ore bodies. Nonrenewable Resources, 4, 187–207.

    Article  Google Scholar 

  • Parsa, M., Maghsoudi, A., Carranza, E. J. M., & Yousefi, M. (2017). Enhancement and mapping of weak multivariate stream sediment geochemical anomalies in Ahar area, NW Iran. Natural Resources Research.

  • Pazand, K., Hezarkhani, A., Ataei, M., & Ghanbari, Y. (2011). Combining AHP with GIS for predictive Cu porphyry potential mapping: A case study in Ahar Area (NW, Iran). Natural Resources Research, 20, 251–262.

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2003a). Artificial neural networks for mineral-potential mapping: A case study from Aravalli Province, Western India. Natural Resources Research, 12, 155–171.

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2003b). Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping. Natural Resources Research, 12, 1–25.

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2006a). A hybrid fuzzy weights-of-evidence model for mineral potential mapping. Natural Resources Research, 15, 1–14.

    Article  Google Scholar 

  • Raines, G. L. (1999). Evaluation of weights of evidence to predict epithermal-gold deposits in the Great Basin of the Western United States. Natural Resources Research, 8, 257–276.

    Article  Google Scholar 

  • Raines, G. L., Connors, K. A., & Chorlton, L. B. (2007). Porphyry copper deposit tract definition—A global analysis comparing geologic map scales. Natural Resources Research, 16, 191–198.

    Article  Google Scholar 

  • Raines, G. L., & Mihalasky, M. J. (2002). A reconnaissance method for delineation of tracts for regional-scale mineral-resource assessment based on geologic-map data. Natural Resources Research, 11, 241–248.

    Article  Google Scholar 

  • Reddy, R. K. T., Bonham-Carter, G. F., & Galley, A. G. (1992). Developing a geographic expert system for regional mapping of volcanogenic massive sulfide (VMS) deposit potential. Nonrenewable Resources, 1, 112–124.

    Article  Google Scholar 

  • Rehder, S. (1994). Experiences with an expert system for gold exploration in Botswana. Nonrenewable Resources, 3, 123–131.

    Article  Google Scholar 

  • Rostirolla, S. P., Soares, P. C., & Chang, H. K. (1998). Bayesian and multivariate methods applied to favorability quantification in Recôncavo Basin and Ribeira Belt, Brazil. Nonrenewable Resources, 7, 7–24.

    Article  Google Scholar 

  • Sahoo, N. R., & Pandalai, H. S. (1999). Integration of sparse geologic information in gold targeting using logistic regression analysis in the Hutti-Maski Schist Belt, Raichur, Karnataka, India—A case study. Natural Resources Research, 8, 233–250.

    Article  Google Scholar 

  • Scott, M., & Dimitrakopoulos, R. (2001). Quantitative analysis of mineral resources for strategic planning: implications for Australian geological surveys. Natural Resources Research, 10, 159–177.

    Article  Google Scholar 

  • Singer, D. A. (1993). Basic concepts in three-part quantitative assessments of undiscovered mineral resources. Nonrenewable Resources, 2, 69–81.

    Article  Google Scholar 

  • Singer, D. A., & Kouda, R. (1999). A comparison of the weights-of-evidence method and probabilistic neural networks. Natural Resources Research, 8, 287–298.

    Article  Google Scholar 

  • Singer, D. A., & Kouda, R. (2001). Some simple guides to finding useful information in exploration geochemical data. Natural Resources Research, 10, 137–147.

    Article  Google Scholar 

  • Skabar, A. A. (2005). Mapping mineralization probabilities using multilayer perceptrons. Natural Resources Research, 14, 109–123.

    Article  Google Scholar 

  • Skabar, A. A. (2011). Mineral prospectivity prediction from high-dimensional geoscientific data using a similarity-based density estimation model. Natural Resources Research, 20, 143–155.

    Article  Google Scholar 

  • Tessema, A. (2017). Mineral systems analysis and artificial neural network modeling of chromite prospectivity in the Western Limb of the Bushveld Complex, South Africa. Natural Resources Research. doi:10.1007/s11053-017-9344-5.

    Google Scholar 

  • Twarakavi, N. K. C., Misra, D., & Bandopadhyay, S. (2006). Prediction of arsenic in bedrock derived stream sediments at a gold mine site under conditions of sparse data. Natural Resources Research, 15, 15–26.

    Article  Google Scholar 

  • Venkataraman, G., Babu Madhavan, B., Ratha, D. S., Antony, J. P., Goyal, R. S., Banglani, S., et al. (2000). Spatial modeling for base-metal mineral exploration through integration of geological data sets. Natural Resources Research, 9, 27–42.

    Article  Google Scholar 

  • Yousefi, M. (2017). Analysis of zoning pattern of geochemical indicators for targeting of porphyry-Cu mineralization: A pixel-based mapping approach. Natural Resources Research. doi:10.1007/s11053-017-9334-7.

    Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2016). Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25, 3–18.

    Article  Google Scholar 

  • Zuo, R. (2017). Machine learning of mineralization-related geochemical anomalies: A review of potential methods. Natural Resources Research. doi:10.1007/s11053-017-9345-4.

    Google Scholar 

From other sources

  • Abedi, M., Kashani, S. B. M., Norouzi, G. H., & Yousefi, M. (2017). A deposit scale mineral prospectivity analysis: A comparison of various knowledge-driven approaches for porphyry copper targeting in Seridune, Iran. Journal of African Earth Sciences, 128, 127–146.

    Article  Google Scholar 

  • Abedi, M., Mohammadi, R., Norouzi, G. H., & Mohammadi, M. S. M. (2016). A comprehensive VIKOR method for integration of various exploratory data in mineral potential mapping. Arabian Journal of Geosciences, 9, 1–21.

    Article  Google Scholar 

  • Abedi, M., & Norouzi, G. H. (2012). Integration of various geophysical data with geological and geochemical data to determine additional drilling for copper exploration. Journal of Applied Geophysics, 83, 35–45.

    Article  Google Scholar 

  • Abedi, M., Norouzi, G. H., & Bahroudi, A. (2012). Support vector machine for multi-classification of mineral prospectivity areas. Computers & Geosciences, 46, 272–283.

    Article  Google Scholar 

  • Abedi, M., Norouzi, G. H., & Fathianpour, N. (2013). Fuzzy outranking approach: A knowledge-driven method for mineral prospectivity mapping. International Journal of Applied Earth Observation and Geoinformation, 21, 556–567.

    Article  Google Scholar 

  • Abedi, M., Norouzi, G. H., & Fathianpour, N. (2015). Mineral potential mapping in Central Iran using fuzzy ordered weighted averaging method. Geophysical Prospecting, 63, 461–477.

    Article  Google Scholar 

  • Agterberg, F. P. (1988). Application of recent developments of regression analysis in regional mineral resource evaluation. In C. F. Chung, A. G. Fabbri, & R. Sinding-Larsen (Eds.), Quantitative analysis of mineral and energy resources (pp. 1–28). Dordrecht: D. Reidel Publishing Company.

    Google Scholar 

  • Agterberg, F. P., Bonham-Carter, G. F., & Wright, D. F. (1990). Statistical pattern integration for mineral exploration. In G. Gaál & D. F. Merriam (Eds.), Computer applications in resource estimation (pp. 1–21). Oxford: Pergamon Press.

    Google Scholar 

  • Agterberg, F. P., Bonham-Carter, G. F., Cheng, Q., & Wright, D. F. (1993). Weights of evidence modeling and weighted logistic regression in mineral potential mapping. In J. C. Davis & U. C. Herzfeld (Eds.), Computers in geology (pp. 13–32). New York: Oxford University Press.

    Google Scholar 

  • Aitchison, J. (1984). The statistical analysis of geochemical compositions. Mathematical Geology, 16, 531–564.

    Article  Google Scholar 

  • Alaei Moghadam, S., Karimi, M., & Sadi Mesgari, M. (2015). Application of a fuzzy inference system to mapping prospectivity for the Chahfiroozeh copper deposit, Kerman, Iran. Journal of Spatial Science, 60, 233–255.

    Article  Google Scholar 

  • An, P., Moon, W. M., & Bonham-Carter, G. F. (1992). On knowledge-based approach on integrating remote sensing, geophysical and geological information. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), 1992, 34–38.

    Article  Google Scholar 

  • An, P., Moon, W. M., & Rencz, A. (1991). Application of fuzzy set theory for integration of geological, geophysical and remote sensing data. Canadian Journal of Exploration Geophysics, 27, 1–11.

    Google Scholar 

  • Andrada de Palomera, P., van Ruitenbeek, F. J. A., & Carranza, E. J. M. (2015). Prospectivity for epithermal gold-silver deposits in the Deseado Massif, Argentina. Ore Geology Reviews, 71, 484–501.

    Article  Google Scholar 

  • Asadi, H. H., & Hale, M. (2001). A predictive GIS model for mapping potential gold and base metal mineralization in Takab area, Iran. Computers & Geosciences, 27, 901–912.

    Article  Google Scholar 

  • Asadi, H. H., Porwal, A., Fatehi, M., Kianpouryan, S., & Lu, Y. (2015). Exploration feature selection applied to hybrid data integration modeling: Targeting copper–gold potential in central Iran. Ore Geology Reviews, 71, 819–838.

    Article  Google Scholar 

  • Austin, J. R., & Blenkinsop, T. G. (2009). Local to regional scale structural controls on mineralisation and the importance of a major lineament in the eastern Mount Isa Inlier, Australia: Review and analysis with autocorrelation and weights of evidence. Ore Geology Reviews, 35, 298–316.

    Article  Google Scholar 

  • Barnes, R. G., Jaireth, S., Miezitis, Y., & Suppel, D. (1999). Mineral potential assessment of parts of the southern New England Orogen. In P. G. Flood (Ed.), New England Orogen, proceedings of the NEO ‘99 conference, 1–3 February 1999. University of New England, Armidale (pp. 373–382).

  • Barros de Andrade, L., Moreira Silva, A., & De Souza Filho, C. R. (2014). Nickel prospective modelling using fuzzy logic on Nova Brasilândia metasedimentary belt, Rondônia, Brazil. Revista Brasileira de Geofísica, 32, 419–431.

    Article  Google Scholar 

  • Billa, M., Cassard, D., Lips, A. L. W., Bouchot, V., Tourliére, B., Stein, G., et al. (2004). Predicting gold-rich epithermal and porphyry systems in the central Andes with a continental-scale metallogenic GIS. Ore Geology Reviews, 25, 39–67.

    Article  Google Scholar 

  • Bonham-Carter, G. F. (1991). Integration of geoscientific data using GIS. In D. J. Maguire, M. F. Goodchild, & D. W. Rhind (Eds.), Geographic information systems: Principles and applications (Vol. 2, pp. 171–184). London: Longman.

    Google Scholar 

  • Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists: Modelling with GIS (p. 416p). Ontario: Pergamon.

    Google Scholar 

  • Bonham-Carter, G. F., & Agterberg, F. P. (1990). Application of a microcomputer-based geographic information system to mineral-potential mapping. In J. T. Hanley & D. F. Merriam (Eds.), Microcomputer applications in geology, II (pp. 49–74). New York: Pergamon Press.

    Chapter  Google Scholar 

  • Bonham-Carter, G. F., & Agterberg, F. P. (1999). Arc-WofE: A GIS tool for statistical integration of mineral exploration datasets. In Proceedings of the 52nd session of the International Statistical Institute, Helsinki, August 10–18, 1999. http://www.stat.fi/isi99/proceedings.html

  • Bonham-Carter, G. F., Agterberg, F. P., & Wright, D. F. (1988). Integration of geological datasets for gold exploration in Nova Scotia. Photogrammetric Engineering and Remote Sensing, 54, 1585–1592.

    Google Scholar 

  • Bonham-Carter, G. F., Agterberg, F. P., & Wright, D. F. (1989). Weights of evidence modelling: A new approach to mapping mineral potential. In F. P. Agterberg & G .F. Bonham-Carter (Eds.), Statistical applications in the earth sciences. Geological Survey of Canada, Paper 89-9 (pp. 171–183).

  • Bonham-Carter, G. F., & Chung, C. F. (1983). Integration of mineral resource data for Kasmere Lake area, Northwest Manitoba, with emphasis on uranium. Mathematical Geology, 15, 25–45.

    Article  Google Scholar 

  • Botbol, J. M., Sinding-Larsen, R., McCammon, R. B., & Gott, G. B. (1977). Weighted characteristics analysis of spatially dependent mineral deposit data. Mathematical Geology, 9, 309–311.

    Article  Google Scholar 

  • Botbol, J. M., Sinding-Larsen, R., McCammon, R. B., & Gott, G. B. (1978). A regionalized multivariate approach to target area selection in geochemical exploration. Economic Geology, 73, 534–546.

    Article  Google Scholar 

  • Brown, W., Gedeon, T., & Barnes, R. (1999). The use of a multilayer feedforward neural network for mineral prospectivity mapping. In T. Gedeon, P. Wong, S. Halgamuge, N. Kasabov, D. Nauck, & K. Fukushima (Eds.), ICONIP ‘99: ANZIIS’99 & ANNES’99 & ACNN’99: Proceedings of the 6th international conference on neural information processing (Vol. 1, pp. 160–165), IEEE, Piscataway, U.S.A, Perth edn.

  • Brown, W. M., Gedeon, T. D., Groves, D. I., & Barnes, R. G. (2000). Artificial neural networks: A new method for mineral prospectivity mapping. Australian Journal of Earth Sciences, 47, 757–770.

    Article  Google Scholar 

  • Butt, C. R. M., & Zeegers, H. (Eds.). (1992). Regolith exploration geochemistry in tropical and subtropical terrains. Handbook of exploration geochemistry (Vol. 4). Amsterdam: Elsevier.

    Google Scholar 

  • Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of exploration and environmental geochemistry (Vol. 11). Amsterdam: Elsevier.

    Google Scholar 

  • Carranza, E. J. M. (2009a). Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geology Reviews, 35, 383–400.

    Article  Google Scholar 

  • Carranza, E. J. M. (2009b). Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity. Computers & Geosciences, 35, 2032–2046.

    Article  Google Scholar 

  • Carranza, E. J. M. (2011). From predictive mapping of mineral prospectivity to quantitative estimation of number of undiscovered prospects. Resource Geology, 61, 30–51.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2001b). Logistic regression for geologically-constrained mapping of gold mineralization potential, Baguio district, Philippines. Exploration and Mining Geology Journal, 10, 165–175.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2002b). Spatial association of mineral occurrences and curvilinear geological features. Mathematical Geology, 34, 203–221.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2003). Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio district, Philippines. Ore Geology Reviews, 22, 117–132.

    Article  Google Scholar 

  • Carranza, E. J. M., Hale, M., & Faassen, C. (2008a). Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping. Ore Geology Reviews, 33, 536–558.

    Article  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015a). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: application of Random Forests algorithm. Ore Geology Reviews, 71, 777–787.

    Article  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015b). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Computers & Geosciences, 74, 60–70.

    Article  Google Scholar 

  • Carranza, E. J. M., Owusu, E., & Hale, M. (2009). Mapping of prospectivity and estimation of number of undiscovered prospects for lode gold, southwestern Ashanti Belt, Ghana. Mineralium Deposita, 44, 915–938.

    Article  Google Scholar 

  • Carranza, E. J. M., & Sadeghi, M. (2010). Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden). Ore Geology Reviews, 38, 219–241.

    Article  Google Scholar 

  • Carranza, E. J. M., Sadeghi, M., & Billay, A. (2015). Predictive mapping of prospectivity for orogenic gold, Giyani greenstone belt (South Africa). Ore Geology Reviews, 71, 703–718.

    Article  Google Scholar 

  • Carranza, E. J. M., Van Ruitenbeek, F. J. A., Hecker, C., Van der Meijde, M., & Van der Meer, F. D. (2008b). Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain. International Journal of Applied Earth Observation and Geoinformation, 10, 374–387.

    Article  Google Scholar 

  • Carranza, E. J. M., Wibowo, H., Barritt, S. D., & Sumintadireja, P. (2008c). Spatial data analysis and integration for regional-scale geothermal potential mapping, West Java, Indonesia. Geothermics, 33, 267–299.

    Article  Google Scholar 

  • Cassard, D., Billa, M., Lambert, A., Picot, J. C., Husson, Y., Lasserre, J. L., et al. (2008). Gold predictivity mapping in French Guiana using an expert-guided data-driven approach based on a regional-scale GIS. Ore Geology Reviews, 34, 471–500.

    Article  Google Scholar 

  • Chen, C., Dai, H., Liu, Y., & He, B. (2011). Mineral prospectivity mapping integrating multi-source geology spatial data sets and logistic regression modelling. In Proceedings of the 2011 IEEE international conference on spatial data mining and geographic knowledge series (ICSDM), 29 June–01 July 2011, Fuzhou, China (pp. 214–217).

  • Chen, C., He, B., & Zeng, Z. (2014). A method for mineral prospectivity mapping integrating C4. 5 decision tree, weights-of-evidence and m-branch smoothing techniques: a case study in the eastern Kunlun Mountains, China. Earth Science Informatics, 7, 13–24.

    Article  Google Scholar 

  • Chen, Y. (2004). MRPM: Three visual basic programs for mineral resource potential mapping. Computers & Geosciences, 30, 969–983.

    Article  Google Scholar 

  • Chen, Y., & Zhao, P. (1998). Zonation in primary halos and geochemical prospecting pattern for the Guilaizhuang gold deposit, eastern China. Nonrenewable Resources, 7, 37–44.

    Article  Google Scholar 

  • Cheng, Q., Agterberg, F. P., & Bonham-Carter, G. F. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109–130.

    Article  Google Scholar 

  • Chica-Olmo, M., Abarca, F., & Rigol, J. P. (2002). Development of a decision support system based on remote sensing and GIS techniques for gold-rich area identification in SE Spain. International Journal of Remote Sensing, 23, 4801–4814.

    Article  Google Scholar 

  • Choi, S., Moon, W. M., & Choi, S. G. (2000). Fuzzy logic fusion of W-Mo exploration data from Seobyeog-ri, Korea. Geosciences Journal, 4, 43–52.

    Article  Google Scholar 

  • Chung, C. F. (1977). An application of discriminant analysis for the evaluation of mineral potential. In R. V. Ramani (Ed.), Application of computer methods in the mineral industry, proceedings of the 14th APCOM symposium. Society of Mining Engineers of American Institute of Mining, Metallurgical, and Petroleum Engineers, New York (pp. 299–311).

  • Chung, C. F. (1978). Computer program for the logistic model to estimate the probability of occurrence of discrete events. Geological Survey of Canada Paper, 78–12, 23p.

    Google Scholar 

  • Chung, C. F. (1983). SIMSAG: Integrated computer system for use in evaluation of mineral and energy resources. Mathematical Geology, 15, 47–58.

    Article  Google Scholar 

  • Chung, C. F. (2003). Use of airborne geophysical surveys for constructing mineral potential maps. In W. D. Goodfellow, S. R. McCutcheon, & J. M. Peter (Eds.), Massive sulfide deposits of the Bathurst mining camp, New Brunswick, and Northern Maine Economic Geology Monograph (Vol. 11, pp. 879–891). Colorado: Society of Economic Geologists.

    Google Scholar 

  • Chung, C. F., & Agterberg, F. P. (1980). Regression models for estimating mineral resources from geological map data. Mathematical Geology, 12, 472–488.

    Google Scholar 

  • Chung, C. F., & Agterberg, F. P. (1988). Poisson regression analysis and its application. In C. F. Chung, A. G. Fabbri, & R. Sinding-Larsen (Eds.), Quantitative analysis of mineral and energy resources (pp. 29–36). Dordrecht: D. Reidel Publishing Company.

    Chapter  Google Scholar 

  • Chung, C. F., Fabbri, A. G., & Chi, K. H. (2002). A strategy for sustainable development of nonrenewable resources using spatial prediction models. In A. G. Fabbri, G. Gáal, & R. B. McCammon (Eds.), Geoenvironmental deposit models for resource exploitation and environmental security (pp. 101–118). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Chung, C. F., & Keating, P. B. (2002). Mineral potential evaluation based on airborne geophysical data. Exploration Geophysics, 33, 28–34.

    Article  Google Scholar 

  • Chung, C. F., & Moon, W. M. (1991). Combination rules of spatial geoscience data for mineral exploration. Geoinformatics, 2, 159–169.

    Article  Google Scholar 

  • Cooper, D. C., Rollin, K. E., Colman, T. B., Davies, J. R., & Wilson, D. (2000). Potential for mesothermal gold and VMS Deposits in the Lower Palaeozoic Welsh Basin. BGS Research Report, RR/00/09. DTI Minerals Programme Publication No. 4. British Geological Suvery, Keyworth.

  • Costa e Silva, E., Silva, A. M., Bemfica Toldeo, C. I., Mol, A. G., Otterman, D. W., & Cortez de Souza, S. R. (2012). Mineral potential mapping for orogenic gold deposits in the Rio Maria granite greenstone terrane, Southeastern Pará State, Brazil. Economic Geology, 107, 1387–1402.

    Article  Google Scholar 

  • Cox, D. P., & Singer, D. A. (Eds.) (1986). Mineral deposit models. U.S. Geological Survey Bulletin 1693, United States Government Printing Office, Washington.

  • Debba, P., Carranza, E. J. M., Stein, A., & Van der Meer, F. D. (2009). Deriving optimal exploration target zones on mineral prospectivity maps. Mathematical Geosciences, 41, 421–446.

    Article  Google Scholar 

  • D’Ercole, C., Groves, D. I., & Knox-Robinson, C. M. (2000). Using fuzzy logic in a Geographic Information System environment to enhance conceptually based prospectivity analysis of Mississippi Valley-type mineralisation. Australian Journal of Earth Sciences, 47, 913–927.

    Article  Google Scholar 

  • Du, X., Zhou, K., Cui, Y., Wang, J., Zhang, N., & Sun, W. (2016). Application of fuzzy Analytical Hierarchy Process (AHP) and Prediction-Area (PA) plot for mineral prospectivity mapping: A case study from the Dananhu metallogenic belt, Xinjiang, NW China. Arabian Journal of Geosciences, 9, 1–15.

    Article  Google Scholar 

  • Eddy, B. G., Bonham-Carter, G. F., & Jefferson, C. W. (2006). Mineral potential analyzed and mapped at multiple scales—a modified fuzzy logic method using digital geology. In J. R. Harris (Ed.), GIS for the earth sciences, Geological Association of Canada Special Publication 44 (pp. 143–162). St. John’s: Geological Association of Canada.

    Google Scholar 

  • Fallon, M., Porwal, A., & Guj, P. (2010). Prospectivity analysis of the Plutonic Marymia Greenstone Belt, Western Australia. Ore Geology Reviews, 38, 208–218.

    Article  Google Scholar 

  • Farzamian, M., Rouhani, A. K., Yarmohammadi, A., Shahi, H., Sabokbar, H. F., & Ziaiie, M. (2016). A weighted fuzzy aggregation GIS model in the integration of geophysical data with geochemical and geological data for Pb–Zn exploration in Takab area, NW Iran. Arabian Journal of Geosciences, 9, 1–17.

    Article  Google Scholar 

  • Feltrin, L. (2008). Predictive modelling of prospectivity for Pb–Zn deposits in the Lawn Hill Region, Queensland, Australia. Ore Geology Reviews, 34, 399–427.

    Article  Google Scholar 

  • Filzmoser, P., Hron, K., & Reimann, C. (2009a). Principal components analysis for compositional data with outliers. Environmetrics, 20, 621–632.

    Article  Google Scholar 

  • Filzmoser, P., Hron, K., & Reimann, C. (2009b). Univariate statistical analysis of environmental (compositional) data: Problems and possibilities. Science of the Total Environment, 407, 6100–6108.

    Article  Google Scholar 

  • Filzmoser, P., Hron, K., & Reimann, C. (2010). The bivariate statistical analysis of environmental (compositional) data. Science of the Total Environment, 408, 4230–4238.

    Article  Google Scholar 

  • Ford, A., & Blenkinsop, T. G. (2008). Combining fractal analysis of mineral deposit clustering with weights of evidence to evaluate patterns of mineralization: application to copper deposits of the Mount Isa Inlier, NW Queensland, Australia. Ore Geology Reviews, 33, 435–450.

    Article  Google Scholar 

  • Ford, A., Hagemann, S. G., Fogliata, A. S., Miller, J. M., Mol, A., & Doyle, P. J. (2015). Porphyry, epithermal, and orogenic gold prospectivity of Argentina. Ore Geology Reviews, 71, 655–672.

    Article  Google Scholar 

  • Ford, A., & Hart, C. J. (2013). Mineral potential mapping in frontier regions: A Mongolian case study. Ore Geology Reviews, 51, 15–26.

    Article  Google Scholar 

  • Gao, Y., Zhang, Z., Xiong, Y., & Zuo, R. (2016). Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China. Ore Geology Reviews, 75, 16–28.

    Article  Google Scholar 

  • Gettings, M.E., & Bultman, M. W. (1993). Quantifying favorableness for occurrence of a mineral deposit type using fuzzy logic—An example from Arizona. U.S. Geol. Survey Open-File Report 93-392.

  • Ghanbari, Y., Hezarkhani, A., Ataei, M., & Pazand, K. (2012). Mineral potential mapping with fuzzy models in the Kerman-Kashmar Tectonic Zone, Central Iran. Applied Geomatics, 4, 173–186.

    Article  Google Scholar 

  • González-Álvarez, I., Porwal, A., McCuaig, T. C., & Maier, W. D. (2010). Hydrothermal Ni prospectivity analysis of Tasmania, Australia. Ore Geology Reviews, 38, 168–183.

    Article  Google Scholar 

  • Govett, G. J. S. (1983). Rock geochemistry in mineral exploration. Handbook of exploration geochemistry (Vol. 3). Amsterdam: Elsevier.

    Google Scholar 

  • Groves, D. I., Goldfarb, R. J., Knox-Robinson, C. M., Ojala, J., Gardoll, S., Yun, G. Y., et al. (2000). Late-kinematic timing of orogenic gold deposits and significance for computer-based exploration techniques with emphasis on the Yilgarn Block, Western Australia. Ore Geology Reviews, 17, 1–38.

    Article  Google Scholar 

  • Hale, M. (Ed.). (2000). Geochemical remote sensing of the sub-surface. Handbook of exploration geochemistry (Vol. 7). Amsterdam: Elsevier.

    Google Scholar 

  • Hale, M., & Plant, J. (Eds.). (1994). Drainage geochemistry. Handbook of exploration geochemistry (Vol. 6). Amsterdam: Elsevier.

    Google Scholar 

  • Harris, D. P. (1984). Mineral resources appraisal—Mineral endowment, resources, and potential supply—Concept, methods, and cases (p. 445p). New York: Oxford University Press.

    Google Scholar 

  • Harris, D. P., & Pan, G. (1991). Consistent geological areas for epithermal gold-silver deposits in the Walker Lake quadrangle of Nevada and California delineated by quantitative methods. Economic Geology, 86, 142–165.

    Article  Google Scholar 

  • Harris, J. R., Grunsky, E., Behnia, P., & Corrigan, D. (2015). Data- and knowledge-driven mineral prospectivity maps for Canada’s North. Ore Geology Reviews, 71(788), 803.

    Google Scholar 

  • Harris, J. R., & Sanborn-Barrie, M. (2006). Mineral potential mapping: examples from the Red Lake Greenstone Belt, Northwest Ontario. In J. R. Harris (Ed.), GIS for the earth sciences, Geological Association of Canada Special Publication 44 (pp. 1–21). St. John’s: Geological Association of Canada.

    Google Scholar 

  • Harris, J. R., Sanborn-Barrie, M., Panagapko, D. A., Skulski, T., & Parker, J. R. (2006). Gold prospectivity maps of the Red Lake greenstone belt: Application of GIS technology. Canadian Journal of Earth Sciences, 43, 865–893.

    Article  Google Scholar 

  • Herbert, S., Woldai, T., Carranza, E. J. M., & Van Ruitenbeek, F. J. A. (2014). Predictive mapping of prospectivity for orogenic gold in Uganda. Journal of African Earth Sciences, 99, 666–693.

    Article  Google Scholar 

  • Joly, A., Porwal, A., & McCuaig, T. C. (2012). Exploration targeting for orogenic gold deposits in the Granites-Tanami Orogen: Mineral system analysis, targeting model and prospectivity analysis. Ore Geology Reviews, 48, 349–383.

    Article  Google Scholar 

  • Kauranne, L. K., Salminen, R., & Eriksson, K. (Eds.). (1992). Regolith exploration geochemistry in arctic and temperate terrains. Handbook of exploration geochemistry (Vol. 5). Amsterdam: Elsevier.

    Google Scholar 

  • Knox-Robinson, C. M. (2000). Vectorial fuzzy logic: a novel technique for enhanced mineral prospectivity mapping with reference to the orogenic gold mineralisation potential of the Kalgoorlie Terrane, Western Australia. Australian Journal of Earth Sciences, 47, 929–942.

    Article  Google Scholar 

  • Levinson, A. A. (1974). Introduction to exploration geochemistry (p. 612p). Calgary: Applied Publishing Ltd.

    Google Scholar 

  • Leväniemi, H., Hulkki, H., & Tiainen, M. (2017). SOM guided fuzzy logic prospectivity model for gold in the Häme Belt, southwestern Finland. Journal of African Earth Sciences, 128, 72–83.

    Article  Google Scholar 

  • Lindsay, M., Aitken, A., Ford, A., Dentith, M., Hollis, J., & Tyler, I. (2016). Reducing subjectivity in multi-commodity mineral prospectivity analyses: Modelling the west Kimberley, Australia. Ore Geology Reviews, 76, 395–413.

    Article  Google Scholar 

  • Lindsay, M. D., Betts, P. G., & Ailleres, L. (2014). Data fusion and porphyry copper prospectivity models, southeastern Arizona. Ore Geology Reviews, 61, 120–140.

    Article  Google Scholar 

  • Lisitsin, V. A., González-Álvarez, I., & Porwal, A. (2013). Regional prospectivity analysis for hydrothermal-remobilised nickel mineral systems in western Victoria, Australia. Ore Geology Reviews, 52, 100–112.

    Article  Google Scholar 

  • Lisitsin, V. A., Porwal, A., & McCuaig, T. C. (2014). Probabilistic fuzzy logic modeling: quantifying uncertainty of mineral prospectivity models using Monte Carlo simulations. Mathematical Geosciences, 46, 747–769.

    Article  Google Scholar 

  • Liu, Y., Cheng, Q., Xia, Q., & Wang, X. (2014). Mineral potential mapping for tungsten polymetallic deposits in the Nanling metallogenic belt, South China. Journal of Earth Science, 25, 689–700.

    Article  Google Scholar 

  • Liu, Y., Cheng, Q., Xia, Q., & Wang, X. (2015). The use of evidential belief functions for mineral potential mapping in the Nanling belt, South China. Frontiers of Earth Science, 9, 342–354.

    Article  Google Scholar 

  • Lusty, P. A. J., Gunn, A. G., McDonnell, P. M., Chacksfield, B. C., Cooper, M. R., & Earls, G. (2009). Gold potential of the Dalradian rocks of north-west Northern Ireland: Prospectivity analysis using Tellus data. Applied Earth Science, 118, 162–177.

    Article  Google Scholar 

  • Madani, A. A. (2011). Knowledge-driven GIS modeling technique for gold exploration, Bulghah gold mine area, Saudi Arabia. The Egyptian Journal of Remote Sensing and Space Science, 14, 91–97.

    Article  Google Scholar 

  • Magalhães, L. A., & Souza Filho, C. R. (2012). Targeting of gold deposits in Amazonian exploration frontiers using knowledge-and data-driven spatial modeling of geophysical, geochemical, and geological data. Surveys In Geophysics, 33, 211–241.

    Article  Google Scholar 

  • McCammon, R. B., Botbol, J. M., Sinding-Larsen, R., & Bowen, R. W. (1983). Characteristics analysis-1981: final program and a possible discovery. Mathematical Geology, 15, 59–83.

    Article  Google Scholar 

  • McCammon, R. B., Botbol, J. M., Sinding-Larsen, R., & Bowen, R. W. (1984). The New CHARaracteristic ANalysis (NCHARAN) Program. U.S. Geological Survey Bulletin 1621.

  • McCuaig, T. C., Beresford, S., & Hronsky, J. (2010). Translating the mineral systems approach into an effective exploration targeting system. Ore Geology Reviews, 38, 128–138.

    Article  Google Scholar 

  • Moon, W. M. (1990). Integration of geophysical and geological data using evidential belief function. IEEE Transactions on Geoscience and Remote Sensing, 28, 711–720.

    Article  Google Scholar 

  • Moon, W. M. (1993). On mathematical representation and integration of multiple geoscience data sets. Canadian Journal of Remote Sensing, 19, 663–667.

    Article  Google Scholar 

  • Moon, W. M., Chung, C. F., & An, P. (1991). Representation and integration of geological, geophysical and remote sensing data. Geoinformatics, 2, 177–188.

    Article  Google Scholar 

  • Moradi, M., Basiri, S., Kananian, A., & Kabiri, K. (2015). Fuzzy logic modeling for hydrothermal gold mineralization mapping using geochemical, geological, ASTER imageries and other geo-data, a case study in Central Alborz, Iran. Earth Science Informatics, 8, 197–205.

    Article  Google Scholar 

  • Moreira, F. R. S., Almeida-Filho, R., & Câmara, F. (2002). Spatial analysis techniques applied to mineral prospecting: An evaluation in the Poços de Caldas Plateau. Revista Brasileira de Geosciêcias, 33(2-Supplement), 183–190.

    Google Scholar 

  • Mostafavi Kashani, S. B., Abedi, M., & Norouzi, G. H. (2016). Fuzzy logic mineral potential mapping for copper exploration using multi-disciplinary geo-datasets, a case study in seridune deposit, Iran. Earth Science Informatics, 9, 167–181.

    Article  Google Scholar 

  • Naghadehi, K. M., Hezarkhani, A., Honarpazhouh, J., & Shabani, K. S. (2014). Integration multisource data for mineral exploration by using fuzzy logic, case study: Taknar deposit, NE of Iran. Arabian Journal of Geosciences, 7, 3227–3241.

    Article  Google Scholar 

  • Najafi, A., Karimpour, M. H., & Ghaden, M. (2014). Application of fuzzy AHP method to IOCG prospectivity mapping: A case study in Taherabad prospecting area, eastern Iran. International Journal of Applied Earth Observation and Geoinformation, 33, 142–154.

    Article  Google Scholar 

  • Nielsen, S. H. H., Cunningham, F., Hay, R., Partington, G., & Stokes, M. (2015a). 3D prospectivity modelling of orogenic gold in the Marymia Inlier, Western Australia. Ore Geology Reviews, 71, 578–591.

    Article  Google Scholar 

  • Nielsen, S. H. H., McKenzie, C., Miller, A., Partington, G., Payne, C., Puccioni, E., et al. (2015b). Chatham Rise nodular phosphate—Modelling the prospectivity of a lag deposit (off-shore New Zealand): A critical tool for use in resource development and deep sea mining. Ore Geology Reviews, 71, 545–557.

    Article  Google Scholar 

  • Nykänen, V., Groves, D. I., Ojala, V. J., Eilu, P., & Gardoll, S. J. (2008a). Reconnaissance scale conceptual fuzzy-logic prospectivity modelling for iron oxide copper–gold deposits in the northern Fennoscandian Shield, Finland. Australian Journal of Earth Sciences, 55, 25–38.

    Article  Google Scholar 

  • Nykänen, V., Groves, D. I., Ojala, V. J., Eilu, P., & Gardoll, S. J. (2008b). Combined conceptual/empirical prospectivity mapping for orogenic gold in the northern Fennoscandian Shield, Finland. Australian Journal of Earth Sciences, 55, 39–59.

    Article  Google Scholar 

  • Nykänen, V., Lahti, I., Niiranen, T., & Korhonen, K. (2015). Receiver operating characteristics (ROC) as validation tool for prospectivity models—A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland. Ore Geology Reviews, 71, 853–860.

    Article  Google Scholar 

  • Nykänen, V., & Salmirinne, H. (2007). Prospectivity analysis of gold using regional geophysical and geochemical data from the Central Lapland Greenstone Belt, Finland. In: Juhani Ojala, V. (Ed.), Gold in the Central Lapland Greenstone Belt, Finland. Geological Survey of Finland, Special Paper 44, pp. 251–269.

  • Oh, H.-J., & Lee, S. (2008). Regional probabilistic and statistical mineral potential mapping of gold-silver deposits using GIS in the Gangreung area, Korea. Resource Geology, 58, 171–187.

    Article  Google Scholar 

  • Oskouei, M. M., & Soltani, F. (2016). Mapping of potential Cu and Au mineralization using EBF method. Applied Geomatics. doi:10.1007/s12518-016-0178-3.

    Google Scholar 

  • Pan, G. C. (1993b). Canonical favourability model for data integration and mineral potential mapping. Computers & Geosciences, 19, 1077–1100.

    Article  Google Scholar 

  • Pan, G. C. (1993c). Regionalized favorability theory for information synthesis in mineral exploration. Mathematical Geology, 25, 603–631.

    Article  Google Scholar 

  • Pan, G. C., & Harris, D. P. (1992a). Decomposed and weighted characteristic analysis for the quantitative estimation of mineral resources. Mathematical Geology, 24, 807–823.

    Article  Google Scholar 

  • Pan, G. C., & Harris, D. P. (1992b). Estimating a favourability equation for the integration of geodata and selection of mineral exploration targets. Mathematical Geology, 24, 177–202.

    Article  Google Scholar 

  • Pan, G. C., & Harris, D. P. (2000). Information synthesis for mineral exploration. New York: Oxford University Press Inc.

    Google Scholar 

  • Partington, G. (2010). Developing models using GIS to assess geological and economic risk: An example from VMS copper gold mineral exploration in Oman. Ore Geology Reviews, 38, 197–207.

    Article  Google Scholar 

  • Payne, C. E., Cunningham, F., Peters, K. J., Nielsen, S., Puccioni, E., Wildman, C., et al. (2015). From 2D to 3D: Prospectivity modelling in the Taupo Volcanic Zone, New Zealand. Ore Geology Reviews, 71, 558–577.

    Article  Google Scholar 

  • Pazand, K., & Hezarkhani, A. (2015). Porphyry Cu potential area selection using the combine AHP-TOPSIS methods: A case study in Siahrud area (NW, Iran). Earth Science Informatics, 8, 207–220.

    Article  Google Scholar 

  • Pazand, K., Hezarkhani, A., & Pazand, K. (2013). Predictive mapping for porphyry copper mineralization: a comparison of knowledge-driven and data-driven fuzzy models in Siahrud area, Azarbaijan province, NW Iran. Applied Geomatics, 5, 215–224.

    Article  Google Scholar 

  • Pereira Leite, E., & De Souza Filho, C. R. (2009a). Artificial neural networks applied to mineral potential mapping for copper-gold mineralizations in the Carajás Mineral Province, Brazil. Geophysical Prospecting, 57, 1049–1065.

    Article  Google Scholar 

  • Pereira Leite, E., & De Souza Filho, C. R. (2009b). Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Carajás Mineral Province, Brazil. Computers & Geosciences, 35, 675–687.

    Article  Google Scholar 

  • Porwal, A., & Carranza, E. J. M. (2008). Classifiers for modelling of mineral potential. In O. Pourret, P. Naïm, & B. Marcot (Eds.), Bayesian networks: A practical guide to applications (pp. 149–171). Chichester: Wiley.

    Chapter  Google Scholar 

  • Porwal, A., & Carranza, E. J. M. (2015). Introduction to the special issue: GIS-based mineral potential modelling and geological data analyses for mineral exploration. Ore Geology Reviews, 71, 477–483.

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2001). Extended weights-of-evidence modelling for predictive mapping of base metal deposit potential in Aravalli province, western India. Exploration and Mining Geology Journal, 10, 273–287.

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2004). A hybrid neuro-fuzzy model for mineral potential mapping. Mathematical Geology, 36, 803–826.

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2006b). Bayesian network classifiers for mineral potential mapping. Computers & Geosciences, 32, 1–16.

    Article  Google Scholar 

  • Porwal, A., Das, R. D., Chaudhary, B., Gonzalez-Alvarez, I., & Kreuzer, O. (2015). Fuzzy inference systems for prospectivity modeling of mineral systems and a case-study for prospectivity mapping of surficial Uranium in Yeelirrie Area, Western Australia. Ore Geology Reviews, 71, 839–852.

    Article  Google Scholar 

  • Porwal, A., González-Álvarez, I., Markwitz, V., McCuaig, T. C., & Mamuse, A. (2010a). Weights-of-evidence and logistic regression modeling of magmatic nickel sulfide prospectivity in the Yilgarn Craton, Western Australia. Ore Geology Reviews, 38, 184–196.

    Article  Google Scholar 

  • Porwal, A. K., & Kreuzer, O. P. (2010). Introduction to the special issue: Mineral prospectivity analysis and quantitative resource estimation. Ore Geology Reviews, 38, 121–127.

    Article  Google Scholar 

  • Porwal, A., & Sides, E. J. (2000). A predictive model for base metal exploration in a GIS environment. International Archives of Photogrammetry and Remote Sensing, XXXIII, 1178–1184.

    Google Scholar 

  • Porwal, A., Yu, L., & Gessner, K. (2010b). SVM-based base-metal prospectivity modeling of the Aravalli Orogen, northwestern India. Geophysical Research Abstracts, 12 EGU2010-15171.

  • Prelat, A. E. (1977). Discriminant analysis as a method of predicting mineral occurrence potentials in central Norway. Mathematical Geology, 9, 343–367.

    Article  Google Scholar 

  • Ranjbar, H., & Honarmand, M. (2004). Integration and analysis of airborne geophysical and ETM+ data for exploration of porphyry type deposits in the Central Iranian Volcanic Belt using fuzzy classification. International Journal of Remote Sensing, 25, 4729–4741.

    Article  Google Scholar 

  • Rigol-Sanchez, J. P., Chica-Olmo, M., & Abarca-Hernandez, F. (2003). Artificial neural networks as a tool for mineral potential mapping with GIS. International Journal of Remote Sensing, 24, 1151–1156.

    Article  Google Scholar 

  • Roberts, R. G., Sheahan, P., & Cherry, M. E. (Eds.) (1988). Ore deposit models. Geoscience Canada Reprint Series 3, Geological Association of Canada, Newfoundland

  • Rodriguez-Galiano, V. F., Chica-Olmo, M., & Chica-Rivas, M. (2014). Predictive modelling of gold potential with the integration of multisource information based on random forest: A case study on the Rodalquilar area, Southern Spain. International Journal of Geographical Information Science, 28, 1336–1354.

    Article  Google Scholar 

  • Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804–818.

    Article  Google Scholar 

  • Rogge, D. M., Halden, N. M., & Beaumont-Smith, C. J. (2000). Mineralization-potential mapping: A data-fusion analysis. In: Report of activities 2000, Manitoba Industry, Trade and Mines, Manitoba Geological Survey, pp. 82–90.

  • Rogge, D. M., Halden, N. M., & Beaumont-Smith, C. J. (2003). Application of data integration for deformation potential mapping using remotely acquired data sets within the Lynn Lake Greenstone Belt, northwestern Manitoba, Canada. Canadian Journal of Remote Sensing, 29, 458–471.

    Article  Google Scholar 

  • Rogge, D. M., Halden, N. M., & Beaumont-Smith, C. (2006). Application of data integration for shear-hosted Au potential modelling: Lynn Lake Greenstone Belt, Northwestern Manitoba, Canada. In J. R. Harris (Ed.), GIS for the earth sciences, Geological Association of Canada Special Publication 44 (pp. 191–210). John’s: Geological Association of Canada, St.

    Google Scholar 

  • Rose, A. W., Hawkes, H. E., & Webb, J. S. (1979). Geochemistry in mineral exploration (2nd ed., p. 657p). London: Academic Press.

    Google Scholar 

  • Roy, R., Cassard, D., Cobbold, P. R., Rossello, E. A., Billa, M., Bailly, L., et al. (2006). Predictive mapping for copper–gold magmatic-hydrothermal systems in NW Argentina: Use of a regional-scale GIS, application of an expert-guided data-driven approach, and comparison with results from a continental-scale GIS. Ore Geology Reviews, 29, 260–286.

    Article  Google Scholar 

  • Shabankareh, M., & Hezarkhani, A. (2017). Application of support vector machines for copper potential mapping in Kerman region, Iran. Journal of African Earth Sciences, 128, 116–126.

    Article  Google Scholar 

  • Shabankareh, M., & Hezarkhani, A. (2016). Copper potential mapping in Kerman copper bearing belt by using ANFIS method and the input evidential layer analysis. Arabian Journal of Geosciences, 9, 1–12.

    Article  Google Scholar 

  • Singer, D. A., & Kouda, R. (1996). Application of a feedforward neural network in the search for Kuruko deposits in the Hokuroku district, Japan. Mathematical Geology, 28, 1017–1023.

    Article  Google Scholar 

  • Singer, D. A., & Kouda, R. (1997). Use of neural network to integrate geoscience information in the classification of mineral deposits and occurrences. In: Gubins, A. G. (Ed.), Proceedings of exploration 97: 4th decennial international conference on mineral exploration (pp. 127–134).

  • Skabar, A. A. (2007a). Mineral potential mapping using Bayesian learning for multilayer perceptrons. Mathematical Geology, 39, 439–451.

    Article  Google Scholar 

  • Skabar, A. (2007b). Modeling the spatial distribution of mineral deposits using neural networks. Natural Resource Modeling, 20, 435–450.

    Article  Google Scholar 

  • Stensgaard, B. M., Chung, C. J., Rasmussen, T. M., & Stendal, H. (2006). Assessment of mineral potential using cross-validation techniques and statistical analysis: A case study from the Paleoproterozoic of West Greenland. Economic Geology, 101, 1297–1413.

    Article  Google Scholar 

  • Tangestani, M. H., & Moore, F. (2001). Porphyry copper potential mapping using the weights-of-evidence model in a GIS, northern Shahr-e-Babak, Iran. Australian Journal of Earth Sciences, 48, 695–701.

    Article  Google Scholar 

  • Tangestani, M. H., & Moore, F. (2002). The use of Dempster-Shafer model and GIS in integration of geoscientific data for porphyry copper potential mapping, north of Shahr-e-Babak, Iran. International Journal of Applied Earth Observation and Geoinformation, 4, 65–74.

    Article  Google Scholar 

  • Tangestani, M. H., & Moore, F. (2003). Mapping porphyry copper potential with a fuzzy model, northern Shahr-e-Babak, Iran. Australian Journal of Earth Sciences, 50, 311–317.

    Article  Google Scholar 

  • Thiart, C., & De Wit, M. (2000). Linking spatial statistics to GIS: Exploring potential gold and tin models of Africa. South African Journal of Geology, 103, 215–230.

    Article  Google Scholar 

  • Walshe, J. L., Cooke, D. R., & Neumayr, P. (2005). Five questions for fun and profit: a mineral systems perspective on metallogenic epochs, provinces and magmatic hydrothermal Cu and Au deposits. In J. Mao & F. P. Bierlein (Eds.), Mineral deposit research: Meeting the global challenge 1 (pp. 477–480). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Wright, D. F., & Bonham-Carter, G. F. (1996). VHMS favourability mapping with GIS-based integration models, Chisel Lake–Anderson Lake area. In: Bonham-Carter, G.F., Galley, A.G., & Hall, G.E.M. (Eds.), EXTECH I: A multidisciplinary approach to massive sulphide research in the Rusty Lake–Snow Lake Greenstone Belts, Manitoba. Geological Survey of Canada Bulletin 426, pp. 339–376, 387–401.

  • Wyborn, L. A. I., Heinrich, C. A., & Jaques, A. L. (1994). Australian proterozoic mineral systems: Essential ingredients and mappable criteria. In: Proceedings of Australian Institute of Mining and Metallurgy annual conference (pp. 109–115), 5–9 August 1994.

  • Xu, S., Cui, Z., Yang, X., & Wang, G. (1992). A preliminary application of weights of evidence in gold exploration in Xiong-er Mountain Region, He-Nan province. Mathematical Geology, 24, 663–674.

    Article  Google Scholar 

  • Yazdi, Z., Rad, A. R. J., & Ajayebi, K. S. (2015). Analysis and modeling of geospatial datasets for porphyry copper prospectivity mapping in Chahargonbad area, Central Iran. Arabian Journal of Geosciences, 8, 8237–8248.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015a). Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Computers & Geosciences, 74, 97–109.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015b). Geometric average of spatial evidence data layers: A GIS-based multi-criteria decision-making approach to mineral prospectivity mapping. Computers & Geosciences, 83, 72–79.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2017). Union score and fuzzy logic mineral prospectivity mapping using discretized and continuous spatial evidence values. Journal of African Earth Sciences, 128, 47–60.

    Article  Google Scholar 

  • Yousefi, M., & Nykänen, V. (2016). Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping. Journal of Geochemical Exploration, 164, 94–106.

    Article  Google Scholar 

  • Zeghouane, H., Allek, K., & Kesraoui, M. (2016). GIS-based weights of evidence modeling applied to mineral prospectivity mapping of Sn-W and rare metals in Laouni area, Central Hoggar, Algeria. Arabian Journal of Geosciences, 9, 1–13.

    Article  Google Scholar 

  • Zhang, N., & Zhou, K. (2015). Mineral prospectivity mapping with weights of evidence and fuzzy logic methods. Journal of Intelligent & Fuzzy Systems, 29, 2639–2651.

    Article  Google Scholar 

  • Zhang, N., Zhou, K., & Du, X. (2017). Application of fuzzy logic and fuzzy AHP to mineral prospectivity mapping of porphyry and hydrothermal vein copper deposits in the Dananhu-Tousuquan island arc, Xinjiang, NW China. Journal of African Earth Sciences, 128, 84–96.

    Article  Google Scholar 

  • Zhang, Z., Zuo, R., & Xiong, Y. (2016). A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China. Science China Earth Sciences, 59, 556–572.

    Article  Google Scholar 

  • Zhou, K., & Zhang, N. (2016). Mineral prospectivity mapping for Porphyry-type and hydrothermal vein-type copper deposits using fuzzy analytical hierarchy process and geographic information system. Journal of Intelligent & Fuzzy Systems, 31, 3143–3153.

    Article  Google Scholar 

  • Zuo, R. (2011). Regional exploration targeting model for Gangdese porphyry copper deposits. Resource Geology, 61, 296–303.

    Article  Google Scholar 

  • Zuo, R., & Carranza, E. J. M. (2011). Support vector machine: a tool for mapping mineral prospectivity. Computers & Geosciences, 37, 1967–1975.

    Article  Google Scholar 

  • Zuo, R., Cheng, Q., & Agterberg, F. P. (2009). Application of a hybrid method combining multilevel fuzzy comprehensive evaluation with asymmetric fuzzy relation analysis to mapping prospectivity. Ore Geology Reviews, 35, 101–108.

    Article  Google Scholar 

  • Zuo, R., Zhang, Z., Zhang, D., Gao, Y., Carranza, E. J. M., & Wang, H. (2015). Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China. Ore Geology Reviews, 71, 502–515.

    Article  Google Scholar 

Download references

Acknowledgment

I thank my co-editor, Renguang Zuo, for his excellent handling of some of the papers submitted for consideration in this special issue. We thank all the authors for their contributions even those who have withdrawn their submissions as well as those whose papers have been rejected by the reviewers. Therefore, we are both grateful to the following individuals for their voluntary time and gracious effort to review the quality of the papers considered in this special issue: Maysam Abedi, Hooshang Asadi, Pouran Behnia, Antonella Buccianti, Matthew Cracknell, David Cohen, Brent Elliott, Mark Gettings, Mario Gonçalves, Eric Grunsky, Jeff Harris, Charlie Kirkwood, Oliver Kreuzer, Yue Liu, Ahmad Mokhtari, Charles Moon, Vesa Nykänen, Greg Partington, Martiya Sadeghi, Andrew Skabar, Qingfei Wang, Wenlei Wang and Mahyar Yousefi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel John M. Carranza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carranza, E.J.M. Natural Resources Research Publications on Geochemical Anomaly and Mineral Potential Mapping, and Introduction to the Special Issue of Papers in These Fields. Nat Resour Res 26, 379–410 (2017). https://doi.org/10.1007/s11053-017-9348-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-017-9348-1

Keywords

Navigation