Skip to main content
Log in

Data-Driven Evidential Belief Modeling of Mineral Potential Using Few Prospects and Evidence with Missing Values

  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Data-driven evidential belief (EB) modeling has already been demonstrated for mineral prospectivity mapping in areas with many (i.e., >20) deposits/prospects (i.e., with indicated/inferred resources). In this paper, EB modeling is applied to a case-study area measuring about 920 km2 with 12 known porphyry-Cu prospects and with evidential data layer containing missing values. Porphyry-Cu prospectivity of the same area has been modeled previously using weights-of-evidence modeling, which serves as reference for evaluating the results of EB modeling. Initially, EB modeling was used to quantify spatial associations of the known porphyry-Cu prospects with various geological features perceived to be porphyry-Cu mineralization controls. Spatial associations of the known porphyry-Cu prospects with geochemical data layers with missing values were also quantified. Then, geological and geochemical data layers found to have positive spatial associations with the known porphyry-Cu prospects were used as predictors of porphyry-Cu prospectivity. The results show that EB modeling is as efficient as WofE modeling in predictive modeling of mineral prospectivity in areas with as few as 12 prospects and with evidential data layers containing missing values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agterberg, F. P., & Bonham-Carter, G. F. (2005). Measuring performance of mineral-potential maps. Natural Resources Research, 14, 1–17.

    Article  Google Scholar 

  • Agterberg, F. P., Bonham-Carter, G. F., Cheng, Q., & Wright, D. F. (1993). Weights of evidence modeling and weighted logistic regression in mineral potential mapping. In J. C. Davis & U. C. Herzfeld (Eds.), Computers in Geology (pp. 13–32). New York: Oxford University Press.

    Google Scholar 

  • Agterberg, F. P., Bonham-Carter, G. F., & Wright, D. F. (1990). Statistical pattern integration for mineral exploration. In G. Gaál & D. F. Merriam (Eds.), Computer Applications in Resource Estimation (pp. 1–21). Oxford: Pergamon Press.

    Chapter  Google Scholar 

  • Agterberg, F. P., & Cheng, W. (2002). Conditional independence test of weights-of-evidence modeling. Natural Resources Research, 11, 249–255.

    Article  Google Scholar 

  • Althuwaynee, O. F., Pradhan, B., & Lee, S. (2012). Application of an evidential belief function model in landslide susceptibility mapping. Computers & Geosciences, 44, 120–135.

    Article  Google Scholar 

  • Alves Magalhães, L., & De Souza Filho, C. R. (2012). Targetting of gold deposits in Amazonian exploration frontiers using knowledge- and data-driven spatial modeling of geophysical, geochemical, and geological data. Surveys of Geophysics, 33, 211–241.

    Article  Google Scholar 

  • Amiri, M. A., Karimi, M., & Sarab, A. A. (2014). Hydrocarbon resources potential mapping using the evidential belief functions and GIS, Ahvaz/Khuzestan Province, southwest Iran. Arabian Journal of Geoscience,. doi:10.1007/s12517-014-1494-8.

    Google Scholar 

  • BMG (1986) Geology and mineral resources of the Philippines, volume 2—mineral resources. Manila: Bureau of Mines and Geosciences (BMG), p 446.

  • Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists: Modelling with GIS (p. 398). Willowdale, ON: Pergamon.

    Google Scholar 

  • Bonham-Carter, G.F., Agterberg, F.P., & Wright, D.F. (1989). Weights of evidence modelling: A new approach to mapping mineral potential. In: F.P. Agterberg, G.F. Bonham-Carter (Eds.), Statistical Applications in the Earth Sciences, Geological Survey of Canada, Paper 89-9, pp. 171–183.

  • Bui, D. T., Pradhan, B., Lofman, O., Revhaug, I., & Dick, O. B. (2012). Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): A comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena, 96, 28–40.

    Article  Google Scholar 

  • Bureau of Mines (1976). Geology and mineral resources of Abra province. Report of Investigation No. 85, Bureau of Mines, Manila, April 1976, 14 pp.

  • Carranza, E.J.M. (2002). Geologically-Constrained Mineral Potential Mapping (Examples from the Philippines). Ph.D. Thesis, Delft University of Technology, The Netherlands. ITC Publication No. 86 (ISBN 90-6164-203-5), 480 pp.

  • Carranza, E. J. M. (2004). Weights-of-evidence modelling of mineral potential: A case study using small number of prospects, Abra, Philippines. Natural Resources Research, 13, 173–187.

    Article  Google Scholar 

  • Carranza, E.J.M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS. In: Handbook of exploration and environmental geochemistry (p. 351). Vol. 11 Amsterdam: Elsevier.

  • Carranza, E. J. M. (2009a). Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geology Reviews, 35, 383–400.

    Article  Google Scholar 

  • Carranza, E. J. M. (2009b). Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity. Computers & Geosciences, 35, 2032–2046.

    Article  Google Scholar 

  • Carranza, E. J. M. (2010). Improved wildcat modelling of mineral prospectivity. Resource Geology, 60, 129–149.

    Article  Google Scholar 

  • Carranza, E. J. M. (2011). From predictive mapping of mineral prospectivity to quantitative estimation of number of undiscovered prospects. Resource Geology, 61, 30–51.

    Article  Google Scholar 

  • Carranza, E. J. M., & Castro, O. T. (2006). Predicting lahar-inundation zones: Case study in west Mount Pinatubo, Philippines. Natural Hazards, 37, 331–372.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (1997). A catchment basin approach to the analysis of geochemical-geological data from Albay province, Philippines. Journal of Geochemical Exploration, 60, 157–171.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2000). Geologically constrained probabilistic mapping of gold potential, Baguio district, Philippines. Natural Resources Research, 9, 237–253.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2001). Logistic regression for geologically-constrained mapping of gold mineralization potential, Baguio district, Philippines. Exploration and Mining Geology Journal, 10, 165–175.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2002a). Where are porphyry copper deposits spatially localized? A case study in Benguet province, Philippines. Natural Resources Research, 11, 45–59.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2002b). Wildcat mapping of gold potential, Baguio district, Philippines. Transactions of Institution of Mining and Metallurgy, Section B, 111, B100–B105.

    Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2003). Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio district, Philippines. Ore Geology Reviews, 22, 117–132.

    Article  Google Scholar 

  • Carranza, E. J. M., Hale, M., & Faassen, C. (2008a). Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping. Ore Geology Reviews, 33, 536–558.

    Article  Google Scholar 

  • Carranza, E. J. M., Owusu, E., & Hale, M. (2009). Mapping of prospectivity and estimation of number of undiscovered prospects for lode-gold, southwestern Ashanti Belt, Ghana. Mineralium Deposita, 44, 915–938.

    Article  Google Scholar 

  • Carranza, E. J. M., & Sadeghi, M. (2010). Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden). Ore Geology Reviews, 38, 219–241.

    Article  Google Scholar 

  • Carranza, E. J. M., Van Ruitenbeek, F. J. A., Hecker, C., Van der Meijde, M., & Van der Meer, F. D. (2008b). Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain. International Journal of Applied Earth Observation and Geoinformation, 10, 374–387.

    Article  Google Scholar 

  • Carranza, E. J. M., Wibowo, H., Barritt, S. D., & Sumintadireja, P. (2008c). Spatial data analysis and integration for regional-scale geothermal potential mapping, West Java, Indonesia. Geothermics, 37, 267–299.

    Article  Google Scholar 

  • Carranza, E. J. M., Woldai, T., & Chikambwe, E. M. (2005). Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi district, Zambia. Natural Resources Research, 14, 47–63.

    Article  Google Scholar 

  • Dempster, A. P. (1967). Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, 38, 325–339.

    Article  Google Scholar 

  • Dempster, A. P. (1968). Generalization of Bayesian inference. Journal of the Royal Statistical Society: Series B, 30, 205–247.

    Google Scholar 

  • Fabbri, A. G., & Chung, C. J. (2008). On blind tests and spatial prediction models. Natural Resources Research, 17, 107–118.

    Article  Google Scholar 

  • Ghosh, S., & Carranza, E. J. M. (2010). Spatial analysis of mutual fault/fracture and slope controls on rocksliding in Darjeeling Himalaya, India. Geomorphology, 122, 1–24.

    Article  Google Scholar 

  • JICA (1980). Report on the Geological Survey of Northwestern Luzon, Phase II: Japan Intern. Cooperating Agency (JICA), Tokyo, unpaginated.

  • Lee, S., Hwang, J., & Park, I. (2013). Application of data-driven evidential belief functions to landslide susceptibility mapping in Jinbu, Korea. Catena, 100, 15–30.

    Article  Google Scholar 

  • Liu, Y., Li, Z.-L., Laukamp, C., West, G., & Gardoll, S. (2013). Quantified spatial relationships between gold mineralisation and key ore genesis controlling factors, and predictive mineralisation mapping, St Ives Goldfield, Western Australia. Ore Geology Reviews, 54, 157–166.

    Article  Google Scholar 

  • Luo, J. (1990). Statistical mineral prediction without defining a training area. Mathematical Geology, 22(3), 253–260.

    Article  Google Scholar 

  • Luo, X., & Dimitrakopoulos, R. (2003). Data-driven fuzzy analysis in quantitative mineral resource assessment. Computers & Geosciences, 29(1), 3–13.

    Article  Google Scholar 

  • Lusty, P. A. J., Scheib, C., Gunn, A. G., & Walker, A. S. D. (2012). Reconnaissance-scale prospectivity analysis of gol mineralisation in the Southern Uplands-Down-Longford Terrane, Northern Ireland. Natural Resources Research, 21, 359–382.

    Article  Google Scholar 

  • Nampak Pradhan, B., & Manap, M. A. (2014). Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. Journal of Hydrology, 513, 283–300.

    Article  Google Scholar 

  • Pan, G. C., & Harris, D. P. (2000). Information Synthesis for Mineral Exploration. New York: Oxford University Press Inc.

    Google Scholar 

  • Park, N.-W. (2011). Application of Dempster-Shafer theory of evidence to GIS-based landslide susceptibility analysis. Environmental Earth Science, 62, 367–376.

    Article  Google Scholar 

  • Park, I., Kim, Y., & Lee, S. (2014). Groundwater productivity potential mapping using evidential belief function. Groundwater. doi:10.1111/gwat.12197.

    Google Scholar 

  • Pereira Leite, E., & De Souza Filho, C. R. (2009a). Artificial neural networks applied to mineral potential mapping for copper-gold mineralizations in the Carajás Mineral Province, Brazil. Geophysical Prospecting, 57, 1049–1065.

    Article  Google Scholar 

  • Pereira Leite, E., & De Souza Filho, C. R. (2009b). Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Carajás Mineral Province, Brazil. Computers & Geosciences, 35, 675–687.

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2001). Extended weights-of-evidence modeling for predictive mapping of base metal deposit potential, Aravalli province, India. Exploration and Mining Geology Journal, 10, 273–287.

    Article  Google Scholar 

  • Pradhan, B., Abokharima, M. H., Jebur, M. N., & Tehrany, M. S. (2014). Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. Natural Hazards. doi:10.1007/s11069-014-1128-1.

    Google Scholar 

  • Shafer, G. (1976). A mathematical theory of evidence (p. 297). Princeton, NJ: Princeton Univ. Press.

    Google Scholar 

  • Sillitoe, R.H., & Gappe, I.M., Jr. (1984). Philippine Porphyry Copper Deposits: Geological Setting and Characteristics. CCOP Technical Publication 14, Bangkok, 89 pp.

  • Wright, D. F., & Bonham-Carter, G. F. (1996).VHMSfavourability mapping with GIS-based integration models, Chisel Lake-Anderson Lake area. In: Bonham-Carter, G. F., Galley, A. G., Hall, G. E. M. (Eds.), EXTECH I: A multidisciplinary approach to massive sulphide research in the rusty lake—snow lake greenstone belts, Manitoba (pp. 339–376, 387–401). Ottawa: Geological Survey Canada Bulletin 426.

Download references

Acknowledgments

The author would like to thank two anonymous reviewers for their constructive comments and to Associate Editor Renguang Zuo for editorial handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel John M. Carranza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carranza, E.J.M. Data-Driven Evidential Belief Modeling of Mineral Potential Using Few Prospects and Evidence with Missing Values. Nat Resour Res 24, 291–304 (2015). https://doi.org/10.1007/s11053-014-9250-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-014-9250-z

Keywords

Navigation