Skip to main content

Advertisement

Log in

Data-Driven Predictive Modeling of Mineral Prospectivity Using Random Forests: A Case Study in Catanduanes Island (Philippines)

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The Random Forests (RF) algorithm is a machine learning method that has recently been demonstrated as a viable technique for data-driven predictive modeling of mineral prospectivity, and thus, it is instructive to further examine its usefulness in this particular field. A case study was carried out using data from Catanduanes Island (Philippines) to investigate further (a) if RF modeling can be used for data-driven modeling of mineral prospectivity in areas with few (i.e., <20) mineral occurrences and (b) if RF modeling can handle predictor variables with missing values. We found that RF modeling outperforms evidential belief (EB) modeling of prospectivity for hydrothermal Au–Cu deposits in Catanduanes Island, where 17 hydrothermal Au–Cu prospects are known to exist. Moreover, just like EB modeling, RF modeling allows analysis of the spatial relationships between known prospects and individual layers of predictor data. Furthermore, RF modeling can handle missing values in predictor data through an RF-based imputation technique whereas in EB modeling, missing values are simply represented by maximum uncertainty. Therefore, the RF algorithm is a potentially useful method for data-driven predictive modeling of mineral prospectivity in regions with few (i.e., <20) occurrences of mineral deposits of the type sought. However, further testing of the method in other regions with few mineral occurrences is warranted to fully determine its usefulness in data-driven predictive modeling of mineral prospectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adam, E., Mutanga, O., Odindi, J., & Abdel-Rahman, E. M. (2014). Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers. International Journal of Remote Sensing, 35, 3440–3458.

    Article  Google Scholar 

  • Agterberg, F. P. (1992). Combining indicator patterns in weights of evidence modeling for resource evaluation. Nonrenewable Resources, 1, 39–50.

    Article  Google Scholar 

  • Agterberg, F. P. (1993). Calculation of the variance of mean values for blocks in regional resource evaluation studies. Nonrenewable Resources, 2, 312–324.

    Article  Google Scholar 

  • Agterberg, F. P., & Bonham-Carter, G. F. (2005). Measuring performance of mineral-potential maps. Natural Resources Research, 14, 1–17.

    Article  Google Scholar 

  • Agterberg, F. P., Bonham-Carter, G. F., Cheng, Q., & Wright, D. F. (1993). Weights of evidence modeling and weighted logistic regression in mineral potential mapping. In J. C. Davis & U. C. Herzfeld (Eds.), Computers in geology (pp. 13–32). New York: Oxford University Press.

    Google Scholar 

  • Agterberg, F. P., Bonham-Carter, G. F., & Wright, D. F. (1990). Statistical pattern integration for mineral exploration. In G. Gaál & D. F. Merriam (Eds.), Computer applications in resource estimation (pp. 1–21). Oxford: Pergamon Press.

    Chapter  Google Scholar 

  • Agterberg, F. P., & Cheng, Q. (2002). Conditional independence test for weights-of-evidence modeling. Natural Resources Research, 11, 249–255.

    Article  Google Scholar 

  • Alves Magalhães, L., & De Souza Filho, C. R. (2012). Targetting of gold deposits in Amazonian exploration frontiers using knowledge- and data-driven spatial modeling of geophysical, geochemical, and geological data. Surveys of Geophysics, 33, 211–241.

    Article  Google Scholar 

  • BMG. (1982). Geology and mineral resources of the Philippines, Volume 1—Geology (406 pp.). Manila: Bureau of Mines and Geosciences (BMG).

  • Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists, modelling with GIS. Pergamon, Ontario, 398 pp.

  • Bonham-Carter, G. F., Agterberg, F. P., & Wright, D. F. (1988). Integration of geological datasets for gold exploration in Nova Scotia. Photogrammetric Engineering and Remote Sensing, 54, 1585–1592.

    Google Scholar 

  • Bonham-Carter, G. F., Agterberg, F. P., & Wright, D. F. (1989). Weights of evidence modelling: A new approach to mapping mineral potential. In F. P. Agterberg & G. F. Bonham-Carter (Eds.), Statistical applications in the earth sciences. Montreal: Geological Survey of Canada, Paper 89-9, pp. 171–183.

  • Bonham-Carter, G. F., & Chung, C. F. (1983). Integration of mineral resource data for Kasmere Lake area, Northwest Manitoba, with emphasis on uranium. Mathematical Geology, 15, 25–45.

    Article  Google Scholar 

  • Boots, B. N., & Getis, A. (1988). Point pattern analysis. Sage University Scientific Geography, series no. 8. Beverly Hills: Sage, 93 pp.

  • Bougrain, L., Gonzalez, M., Bouchot, V., Cassard, D., Lips, A. L. W., Alexandre, F., & Stein, G. (2003). Knowledge recovery for continental-scale mineral exploration by neural networks. Natural Resources Research, 12, 173-181.

    Article  Google Scholar 

  • Breiman, L. (1984). Classification and regression trees. London: Chapman & Hall/CRC.

    Google Scholar 

  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140.

    Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  • Breslow, N. E., & Cain, K. C. (1988). Logistic regression for two-stage case-control data. Biometrika, 75, 11–20.

    Article  Google Scholar 

  • Brown, W. M., Gedeon, T. D., & Groves, D. I. (2003). Use of noise to augment training data: A neural network method for mineral-potential mapping in regions of limited known deposit examples. Natural Resources Research, 12, 141–152.

    Article  Google Scholar 

  • Brown, W. M., Gedeon, T. D., Groves, D. I., & Barnes, R. G. (2000). Artificial neural networks: A new method for mineral prospectivity mapping. Australian Journal of Earth Sciences, 47, 757–770.

    Article  Google Scholar 

  • Bühlmann, P., & Yu, B. (2002). Analyzing bagging. Annals of Statistics, 30, 927–961.

    Article  Google Scholar 

  • Carranza, E. J. M. (2002). Geologically-constrained mineral potential mapping (examples from the Philippines). Ph.D. Thesis, Delft University of Technology, The Netherlands. ITC (International Institute for Geo-Information Science and Earth Observation) Publication No. 86. Enschede: ITC, 480 pp.

  • Carranza, E. J. M. (2004). Weights-of-evidence modelling of mineral potential: A case study using small number of prospects, Abra, Philippines. Natural Resources Research, 13, 173–187.

    Article  Google Scholar 

  • Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of Exploration and Environmental Geochemistry, Vol. 11. Amsterdam: Elsevier, 351 pp.

  • Carranza, E. J. M. (2009a). Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geology Reviews, 35, 383–400.

    Article  Google Scholar 

  • Carranza, E. J. M. (2009b). Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity. Computers & Geosciences, 35, 2032–2046.

    Article  Google Scholar 

  • Carranza, E. J. M. (2010a). Catchment basin modelling of stream sediment anomalies revisited: Incorporation of EDA and fractal analysis. Geochemistry: Exploration. Environment, Analysis, 10, 365–381.

    Google Scholar 

  • Carranza, E. J. M. (2010b). Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes. Geochemistry: Exploration. Environment, Analysis, 10, 171–187.

    Google Scholar 

  • Carranza, E. J. M. (2011a). From predictive mapping of mineral prospectivity to quantitative estimation of number of undiscovered prospects. Resource Geology, 61, 30–51.

    Article  Google Scholar 

  • Carranza, E. J. M. (2011b). Geocomputation of mineral exploration targets. Computers & Geosciences, 37, 1907–1916.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (1997). A catchment basin approach to the analysis of reconnaissance geochemical-geological data from Albay province, Philippines. Journal of Geochemical Exploration, 60, 157–171.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2000). Geologically-constrained probabilistic mapping of gold potential, Baguio district, Philippines. Natural Resources Research, 9, 237–253.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2001). Logistic regression for geologically-constrained mapping of gold mineralization potential, Baguio district, Philippines. Exploration and Mining Geology Journal, 10, 165–175.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2002). Where are porphyry copper deposits spatially localized? A case study in Benguet province, Philippines. Natural Resources Research, 11, 45–59.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2003). Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio district, Philippines. Ore Geology Reviews, 22, 117–132.

    Article  Google Scholar 

  • Carranza, E. J. M., Hale, M., & Faassen, C. (2008a). Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping. Ore Geology Reviews, 33, 536–558.

    Article  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015a). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of Random Forests algorithm. Ore Geology Reviews. doi:10.1016/j.oregeorev.2014.08.010.

  • Carranza, E. J. M., & Laborte, A. G. (2015b). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Computers & Geosciences, 74, 60–70.

    Article  Google Scholar 

  • Carranza, E. J. M., Owusu, E., & Hale, M. (2009). Mapping of prospectivity and estimation of number of undiscovered prospects for lode-gold, southwestern Ashanti Belt, Ghana. Mineralium Deposita, 44, 915–938.

    Article  Google Scholar 

  • Carranza, E. J. M., & Sadeghi, M. (2010). Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden). Ore Geology Reviews, 38, 219–241.

    Article  Google Scholar 

  • Carranza, E. J. M., Wibowo, H., Barritt, S. D., & Sumintadireja, P. (2008b). Spatial data analysis and integration for regional-scale geothermal potential mapping, West Java, Indonesia. Geothermics, 33, 267–299.

    Article  Google Scholar 

  • Carranza, E. J. M., Woldai, T., & Chikambwe, E. M. (2005). Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi district, Zambia. Natural Resources Research, 14, 47–63.

    Article  Google Scholar 

  • Chen, C., He, B., & Zeng, Z. (2014). A method for mineral prospectivity mapping integrating C4.5 decision tree, weights-of-evidence and m-branch smoothing techniques: A case study in the eastern Kunlun Mountains. China. Earth Science Informatics, 7, 13–24.

    Article  Google Scholar 

  • Cheng, Q., & Agterberg, F. P. (1999). Fuzzy weights of evidence and its application in mineral potential mapping. Natural Resources Research, 8, 27–35.

    Article  Google Scholar 

  • Chung, C. F., & Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30, 451–472.

    Article  Google Scholar 

  • Cooke, D. R., Deyell, C. L., Waters, P. J., Gonzales, R. I., & Zaw, K. (2011). Evidence for magmatic-hydrothermal fluids and ore-forming processes in epithermal and porphyry deposits of the Baguio district, Philippines. Economic Geology, 106, 1399–1424.

    Article  Google Scholar 

  • Corcoran, J. M., Knight, J. F., & Gallant, A. L. (2013). Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of Random Forest classification of wetlands in Northern Minnesota. Remote Sensing, 5, 3213–3238.

    Article  Google Scholar 

  • Cracknell, M. J., & Reading, A. M. (2013). The upside of uncertainty: Identification of lithology contact zones from airborne geophysics and satellite data using Random Forests and Support Vector Machines. Geophysics, 78, WB113–WB126.

  • Cracknell, M. J., & Reading, A. M. (2014). Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Computers & Geoscience, 63, 22–33.

    Article  Google Scholar 

  • Cracknell, M. J., Reading, A. M., & McNeill, A. W. (2013). Mapping geology and volcanic-hosted massive sulfide alteration in the Hellyer-Mt Charter region, Tasmania, using Random Forests and Self-Organising Maps. Australian Journal of Earth Sciences, 61, 287–304.

    Article  Google Scholar 

  • Diggle, P. J. (1983). Statistical Analysis of Spatial Point Patterns (p. 148 pp.). London: Academic Press.

    Google Scholar 

  • Fabbri, A. G., & Chung, C. J. (2008). On blind tests and spatial prediction models. Natural Resources Research, 17, 107–118.

    Article  Google Scholar 

  • Ghimire, B., Rogan, J., & Miller, J. (2010). Contextual land-cover classification: Incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic. Remote Sensing Letters, 1, 45–54.

    Article  Google Scholar 

  • Giannini, T. C., Chapman, D. S., Saraiva, A. M., Alves-dos Santos, I., & Biesmeijer, J. C. (2013). Improving species distribution models using biotic interactions: A case study of parasites, pollinators and plants. Ecography, 36, 649–656.

    Article  Google Scholar 

  • Harris, J. R., Grunsky, E., Behnia, P., & Corrigan, D. (2015). Data- and knowledge-driven mineral prospectivity maps for Canada’s North. Ore Geology Reviews,. doi:10.1016/j.oregeorev.2015.01.004.

    Google Scholar 

  • Harris, D. P., & Pan, G. (1999). Mineral favorability mapping: A comparison of artificial neural networks, logistic regression and discriminant analysis. Natural Resources Research, 8, 93–109.

    Article  Google Scholar 

  • Harris, J. R., Wilkinson, L., Heather, K., Fumerton, S., Bernier, M. A., Ayer, J., & Dahn, R. (2001). Application of GIS processing techniques for producing mineral prospectivity maps – a case study: Mesothermal Au in the Swayze Greenstone Belt, Ontario, Canada. Natural Resources Research, 10, 91–124.

    Article  Google Scholar 

  • Harris, D. P., Zurcher, L., Stanley, M., Marlow, J., & Pan, G. (2003). A comparative analysis of favourability mappings by weights of evidence, probabilistic neural networks, discriminant analysis, and logistic regression. Natural Resources Research, 12, 241–255.

    Article  Google Scholar 

  • He, B., Wang, D., & Chen, C. (2014). A novel method for mineral prospectivity mapping integrating spatial-scene similarity and weights-of-evidence. Earth Science Informatics,. doi:10.1007/s12145-014-0167-1.

    Google Scholar 

  • He, Y., Wang, J., Lek-Ang, S., & Lek, S. (2010). Predicting assemblages and species richness of endemic fish in the upper Yangtze River. Science of the Total Environment, 408, 4211–4220.

    Article  Google Scholar 

  • Heikkinen, R. K., Marmion, M., & Luoto, M. (2012). Does the interpolation accuracy of species distribution models come at the expense of transferability? Ecography, 35, 276–288.

    Article  Google Scholar 

  • Hein, C., Pike, A. S., Blanco, J. F., Covich, A. P., Scatena, F. N., Hawkins, C. P., & Crowl, T. A. (2011). Effects of coupled natural and anthropogenic factors on the community structure of diadromous fish and shrimp species in tropical island streams. Freshwater Biology, 56, 1002–1015.

    Article  Google Scholar 

  • Howard, C., Stephens, P. A., Pearce-Higgins, J. W., Gregory, R. D., & Willis, S. G. (2014). Improving species distribution models: The value of data on abundance. Methods in Ecology and Evolution, 5, 506–513.

    Article  Google Scholar 

  • JICA-MMAJ. (1994). Report on the mineral exploration in the catanduanes area, Phase I. Tokyo: Japan International Cooperating Agency and Metal Mining Agency of Japan, 176 pp.

  • King, G., & Zeng, L. (2001). Logistic regression in rare events data. Political Analysis, 9, 137–163.

    Article  Google Scholar 

  • Laborte, A. G., Maunahan, A. A., & Hijmans, R. J. (2012). Opportunities for expanding paddy rice production in Laos: Spatial predictive modeling using random forest. Journal of Land Use Science, 7, 21–33.

    Article  Google Scholar 

  • Landis, J., & Koch, G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174.

    Article  Google Scholar 

  • Liaw, A., & Wiener, M. (2002). Classification and regression by Random Forest. R News, 2, 18–22.

    Google Scholar 

  • McCuaig, T. C., Beresford, S., & Hronsky, J. (2010). Translating the mineral system approach into an effective exploration targeting system. Ore Geology Reviews, 38, 128–138.

    Article  Google Scholar 

  • Mihalasky, M. J., & Bonham-Carter, G. F. (2001). Lithodiversity and its spatial association with metallic mineral sites, Great Basin of Nevada. Natural Resources Research, 10, 209–226.

    Article  Google Scholar 

  • Miranda, F. E., & Vargas, B. S. (1967). Geology and mineral resources of Catanduanes province. Report of Investigation No. 62. Manila: Philippine Bureau of Mines, 69p.

  • Mitchell, A. H. G., & Balce, G. R. (1990). Geological features of some epithermal gold systems, Philippines. Journal of Geochemical Exploration, 36, 241–296.

    Article  Google Scholar 

  • Mitchell, A. H. G., & Leach, T. M. (1991). Epithermal Gold in the Philippines: Island Arc Metallogenesis, Geothermal Systems and Geology. London: Academic Press. p. 457.

    Google Scholar 

  • Nykänen, V. (2008). Radial basis functional link nets used as a prospectivity mapping tool for orogenic gold deposits within the Central Lapland Greenstone Belt, Northern Fennoscandian Shield. Natural Resources Research, 17, 29–48.

    Article  Google Scholar 

  • O’Brien, J. J., Spry, P. G., Nettleton, D., Xu, R., & Teale, G. S. (2015). Using Random Forests to distinguish gahnite compositions as an exploration guide to Broken Hill-type Pb–Zn–Ag deposits in the Broken Hill domain, Australia. Journal of Geochemical Exploration, 149, 74–86.

    Article  Google Scholar 

  • Oshiro, T. M., Perez, P. S., Baranauskas, J. A. (2012). How many trees in a random forest? In Perner, P. (Ed.), Machine Learning and Data Mining in Pattern Recognition. Lecture Notes in Computer Science, 7376, 154–168.

  • Paganelli, F., Richards, J. P., & Grunsky, E. C. (2002). Integration of structural, gravity, and magnetic data using the weights of evidence method as a tool for kimberlite exploration in the Buffalo Head Hills, Northern Central Alberta, Canada. Natural Resources Research, 11, 219–236.

    Article  Google Scholar 

  • Pan, G. C., & Harris, D. P. (2000). Information synthesis for mineral exploration. New York: Oxford University Press Inc. p. 460.

    Google Scholar 

  • Pereira Leite, E., & De Souza Filho, C. R. (2009a). Artificial neural networks applied to mineral potential mapping for copper-gold mineralizations in the Carajás Mineral Province, Brazil. Geophysical Prospecting, 57, 1049–1065.

    Article  Google Scholar 

  • Pereira Leite, E., & De Souza Filho, C. R. (2009b). Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Carajás Mineral Province, Brazil. Computers & Geosciences, 35, 675–687.

    Article  Google Scholar 

  • Porwal, A. (2006). Mineral potential mapping with mathematical geological models. PhD thesis, University of Utrecht, The Netherlands. ITC (International Institute for Geo-Information Science and Earth Observation) Publication No. 130. Enschede: ITC, 289 pp.

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2003a). Artificial neural networks for mineral potential mapping. Natural Resources Research, 12, 155–171.

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2003b). Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping. Natural Resources Research, 12, 1–25.

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2004). A hybrid neuro-fuzzy model for mineral potential mapping. Mathematical Geology, 36, 803–826.

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2006). A hybrid fuzzy weights-of-evidence model for mineral potential mapping. Natural Resources Research, 15, 1–14.

    Article  Google Scholar 

  • R Development Core Team. (2008). The R Project for Statistical Computing. http://www.R-project.org.

  • Raines, G. L. (1999). Evaluation of weights of evidence to predict epithermal gold deposits in the Great Basin of the western United States. Natural Resources Research, 8, 257–276.

    Article  Google Scholar 

  • Rigol-Sanchez, J. P., Chica-Olmo, M., & Abarca-Hernandez, F. (2003). Artificial neural networks as a tool for mineral potential mapping with GIS. International Journal of Remote Sensing, 24, 1151–1156.

    Article  Google Scholar 

  • Rodriguez-Galiano, V. F., Chica-Olmo, M., & Chica-Rivas, M. (2014). Predictive modelling of gold potential with the integration of multisource information based on random forest: A case study on the Rodalquilar area, Southern Spain. International Journal of Geographic Information Science, 28, 1336–1354.

    Article  Google Scholar 

  • Rodriguez-Galiano, V. F., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews. doi:10.1016/j.oregeorev.2015.01.001.

    Google Scholar 

  • Rodriquez-Galiano, V. F., Abarca-Hernandez, F., Ghimire, B., Chica-Olmo, M., Atkinson, P. M., & Jeganathan, C. (2011). Incorporating spatial variability measures in land-cover classification using Random Forest. Procedia Environmental Sciences, 3, 44–49.

    Article  Google Scholar 

  • Rowlingson, B., & Diggle, P. (1993). Splancs: Spatial point pattern analysis code in S-plus. Computers & Geosciences, 19, 627–655.

    Article  Google Scholar 

  • Sahoo, N. R., & Pandalai, H. S. (1999). Integration of sparse geologic information in gold targeting using logistic regression analysis in the Hutti-Maski schist belt, Raichur, Karnataka, India – a case study. Natural Resources Research, 8, 233–250.

    Article  Google Scholar 

  • Schill, W., Jockel, K. H., Drescher, K., & Timm, J. (1993). Logistic analysis in case-control studies under validation sampling. Biometrika, 80, 339–352.

    Article  Google Scholar 

  • Scott, M., & Dimitrakopoulos, R. (2001). Quantitative analysis of mineral resources for strategic planning: Implications for Australian Geological Surveys. Natural Resources Research, 10, 159–177.

    Article  Google Scholar 

  • Singer, D. A., & Kouda, R. (1996). Application of a feedforward neural network in the search for Kuruko deposits in the Hokuroku district, Japan. Mathematical Geology, 28, 1017–1023.

    Article  Google Scholar 

  • Singer, D. A., & Kouda, R. (1999). A comparison of the weights-of-evidence method and probabilistic neural networks. Natural Resources Research, 8, 287–298.

    Article  Google Scholar 

  • Skabar, A. A. (2005). Mapping mineralization probabilities using multilayer perceptrons. Natural Resources Research, 14, 109–123.

    Article  Google Scholar 

  • Skabar, A. (2007). Mineral potential mapping using Bayesian learning for multilayer perceptrons. Mathematical Geology, 39, 439–451.

    Article  Google Scholar 

  • Stekhoven, D. J. (2013). missForest: Nonparametric Missing Value Imputation using Random Forest. R package version 1.4 (http://cran.r-project.org/web/packages/missForest/missForest.pdf).

  • Stekhoven, D. J., & Bühlmann, P. (2012). MissForest – non-parametric missing value imputation for mixed-type data. Bioinformatics, 28, 112–118.

    Article  Google Scholar 

  • UNDP. (1987). Geochemical nature of epithermal gold mineralization and related anomalies in the Philippines. United Nations Development Programme (UNDP), Technical Report No. 4, DP/UN/PHI-85-001/6. New York: UNDP, 151 pp.

  • Waske, B., Benediktsson, J. A., Arnason, K., & Sveinsson, J. R. (2009). Mapping of hyperspectral AVIRIS data using machine-learning algorithms. Canadian Journal of Remote Sensing, 35, 106–116.

    Article  Google Scholar 

  • Waske, B., Van der Linden, S., Oldenburg, C., Jakimow, B., Rabe, A., & Hostert, P. (2012). imageRF – a user-oriented implementation for remote sensing image analysis with Random Forests. Environmental Modelling and Software, 35, 192–193.

    Article  Google Scholar 

  • Wolfe, J. A. (1988). Arc magmatism and mineralization in North Luzon and its relationship to subduction at the East Luzon and North Manila Trenches. Journal of Southeast Asian Earth Sciences, 2, 79–93.

    Article  Google Scholar 

  • Wright, D. F., & Bonham-Carter, G. F. (1996). VHMSfavourability mapping with GIS-based integration models, Chisel Lake-Anderson Lake area. In G. F. Bonham-Carter, A. G. Galley, & G. E. M. Hall (Eds.), EXTECH I: A multidisciplinary approach to massive sulphide research in the Rusty Lake—Snow Lake Greenstone Belts, Manitoba. Geological Survey Canada Bulletin, 426, 339–376, 387–401.

Download references

Acknowledgments

The authors Associate Editor Prof. Renguang Zuo for editorial handling of our manuscript, and two anonymous reviewers for their useful comments that help improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel John M. Carranza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carranza, E.J.M., Laborte, A.G. Data-Driven Predictive Modeling of Mineral Prospectivity Using Random Forests: A Case Study in Catanduanes Island (Philippines). Nat Resour Res 25, 35–50 (2016). https://doi.org/10.1007/s11053-015-9268-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-015-9268-x

Keywords

Navigation