Skip to main content
Log in

Prospectivity Modeling for Cambrian–Ordovician Hydraulic Fracturing Sand Resources Around The Llano Uplift, Central Texas

  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Cambrian–Ordovician strata in Central Texas are a major source of specialty sand for hydraulic fracturing and have potential to play a bigger role in proppant supply to markets in and around Texas. Sandstone in the Hickory Member of the Riley Formation is suitable in compressive strength, as well as grain size and shape to be used as proppant. The Hickory sandstone forms the basal sequence that non-conformably overlies the Precambrian basement and is a complex succession of terrestrial and transgressive marine arkosic to quartz arenitic sands and silts. The quantity and location of sand resources in the Central Texas Frac Sand district is illustrated through geospatial volumetric techniques and estimated at 5 billion tonnes of proppant material. The prospectivity modeling of favorable characteristics of existing resource locations is applied to determine new sites for resource development and locate and quantify the abundance of prospective natural sand resources in the Central Texas Frac Sand district.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  • Adams, J.E. (1954). Mid-Paleozoic paleogeography of central Texas. In San Angelo, Geological Society Guidebook, Cambrian (1st) Field Trip—Llano area, pp. 70–73.

  • Barker, D. S., & Reed, R. M. (2010). Proterozoic granites of the Llano Uplift, Texas: A collision–related suite containing rapakivi and topaz granites. GSA Bulletin, 122(1–2), 253–264.

    Article  Google Scholar 

  • Barnes, V.E., & Bell, W.C. (1977). The Moore Hollow Group of Central Texas. University of Texas at Austin, Bureau of Economic Geology, Report of Investigations no. 88.

  • Barnes, V., Bell, W.C., Clabaugh, S.E., Rodda, P.U., & Young, K. (1972). Geology of the Llano Region and Austin Area. Field Excursion: Guidebook Number 12, Bureau of Economic Geology, p. 75.

  • Bonham-Carter, G. E. (1994). Geographic information systems for geoscientists, modeling with GIS. New York: Pergamon.

    Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2001). Geologically constrained fuzzy mapping of gold mineralization potential, Baguio district, Philippines. Natural Resources Research, 10, 125–136.

    Article  Google Scholar 

  • Carranza, E. J. M., Mangaoang, J. C., & Hale, M. (1999). Application of mineral exploration models and GIS to generate mineral potential maps as input for optimum land-use planning in the Philippines. Natural Resources Research, 8, 165–173.

    Article  Google Scholar 

  • Corrigan, J. C., Cerveny, P. F., Donelick, R. A., & Bergman, S. C. (1998). Postorogenic denudation along the Paleozoic Ouachita trend, south central United States of America: Magnitude and timing constraints from apatite fission track data. Tectonics, 17, 587–603.

    Article  Google Scholar 

  • De Araújo, C. C., & Macedo, A. B. (2002). Multicriteria geologic data analysis for mineral favorability mapping: Application to a metal sulphide mineralized area, Ribeira Valley Metallogenic Province, Brazil. Natural Resources Research, 11, 29–43.

    Article  Google Scholar 

  • De Quadros, T. F. P., Koppe, J. C., Strieder, A. J., & Costa, J. F. C. L. (2006). Mineral-potential mapping: A comparison of weights-of-evidence and fuzzy methods. Natural Resources Research, 15, 49–65.

    Article  Google Scholar 

  • Elliott, J. (2012). Frac sand in the pipeline. Industrial Minerals, 533, February, 32–40.

  • Ford, A., Miller, J. M., & Mol, A. G. (2015). A comparative analysis of weights of evidence, evidential belief functions, and fuzzy logic for mineral potential mapping using incomplete data at the scale of investigation. Natural Resources Research. doi:10.1007/s11053-015-9263-2.

    Google Scholar 

  • Garrison, J. R, Jr, Long, L. E., & Richmann, D. L. (1979). Rb-Sr and K-Ar geochronologic and isotopic studies, Llano uplift, central Texas. Contributions to Mineralogy and Petrology, 69, 361–374.

    Article  Google Scholar 

  • Harris, J. R., Lemkow, D., Jefferson, C., Wright, D., & Falck, W. H. (2008). Mineral potential modelling for the Greater Nahanni Ecosystem using GIS based analytical methods. Natural Resources Research, 17, 51–78.

    Article  Google Scholar 

  • Harris, J. R., Wilkinson, L., Heather, K., Fumerton, S., Bernier, M. A., Ayer, J., & Dahn, R. (2001). Application of GIS processing techniques for producing mineral prospectivity maps—A case study: Mesothermal Au in the Swayze Greenstone Belt, Ontario, Canada. Natural Resources Research, 10, 91–124.

    Article  Google Scholar 

  • Helper, M. A. (2000). Geology of the eastern Llano Uplift. In J. R. Kyle (Ed.), Geology and Historical Mining (pp. 33–48). Llano Uplift Region: Austin Geological Society, Guidebook 20.

    Google Scholar 

  • Kier, R.S. (1980). Depositional history of the Marble Falls Formation of the Llano region, Central Texas (pp. 59–75). West Texas Geological Society Publication 80-73, Guidebook to the Annual Field Trip.

  • Krause, S.J. (1996). Stratigraphic framework, facies analysis, and depositional history of the Middle to Late Cambrian Riley Formation, central Texas. Masters Thesis, University of Texas at Austin.

  • Kyle, J.R., and McBride, E. F. (2012). Geology of the Voca frac sand district, western Llano Uplift, Texas. In Conway, F.M. (Ed.), Proceedings, 48th Annual Forum on the Geology of Industrial Minerals: Arizona Geological Survey Special Paper 9, Chapter 2 (pp. 1–13).

  • McBride, E.F., Abdel-Wahab, A.A., & Milliken, K.L. (2002). Petrography and diagenesis of a half-billion-year- old cratonic sandstone (Hickory), Llano region, Texas. University of Texas at Austin, Bureau of Economic Geology, Report of Investigation No. 264.

  • McKay, G., & Harris, J. R. (2015). Comparison of the data-driven Random Forests model and a knowledge-driven method for mineral prospectivity mapping: a case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada. Natural Resources Research. doi:10.1007/s11053-015-9274-z.

    Google Scholar 

  • Mosher, S. (1993). Exposed Proterozoic rocks of Texas. In J. C. Reed Jr, M. E. Bickford, R. S. Houston, P. K. Link, D. W. Rankin, P. K. Sims, & W. R. Van Schmus (Eds.), Precambrian Conterminous U.S., The Geology of North America, C-2 (pp. 366–378). Boulder: Geological Society of America.

    Google Scholar 

  • Mosher, S. (1998). Tectonic evolution of the southern Laurentian Grenville orogenic belt. Geological Society of America Bulletin, 110, 1357–1375.

    Article  Google Scholar 

  • Mosher, S., Levin, J. S. F., & Carlson, W. D. (2008). Mesoproterozoic plate tectonics: A collisional model for the Grenville-aged orogenic belt in the Llano Uplift, central Texas. Geology, 36(1), 55–58.

    Article  Google Scholar 

  • Pazand, K., Hezarkhani, A., Ataei, M., & Ghanbari, Y. (2011). Combining AHP with GIS for predictive Cu porphyry potential mapping: A case study in Ahar Area (NW, Iran). Natural Resources Research, 20, 251–262.

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2003). Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping. Natural Resources Research, 12, 1–25.

    Article  Google Scholar 

  • Reese, J. F., Mosher, S., Connelly, J., & Roback, R. (2000). Mesoproterozoic chronostratigraphy of the southeastern Llano Uplift, central Texas. Geological Society of America Bulletin, 112(2), 278–291.

    Article  Google Scholar 

  • Root, D. H., Menzie, W. D., & Scott, W. A. (1992). Computer Monte Carlo simulation in quantitative resource estimation. Natural Resources Research, 1(2), 125–138.

    Google Scholar 

  • Salvador, A. (1991). Origin and development of the Gulf of Mexico Basin. In A. Salvador (Ed.), the Gulf of Mexico Basin (Vol. J, pp. 389–444). Boulder: Geological Society of America.

    Google Scholar 

  • Sibson, R. (1981). A brief description of natural neighbor interpolation. Interpolating Multivariate Data (pp. 21–36). New York: Wiley.

    Google Scholar 

  • Singer, D. A., & Menzie, W. D. (2005). Statistical guides to estimating the number of undiscovered mineral deposits: An example with porphyry copper deposits. In Q. Cheng & G. Bonham-Carter (Eds.), Proceedings of IAMG-The annual conference of the International Association for Mathematical Geology (pp. 1028–1033). Toronto: Geomatics Research Laboratory, York University.

    Google Scholar 

  • Smith, D. R., Barnes, C., Shannon, W., Roback, R., & James, E. (1997). Petrogenesis of Mid-Proterozoic granitic magmas; examples from central and west Texas. Precambrian Research, 85, 53–79.

    Article  Google Scholar 

  • Terracina, J.M., Turner, J.M., Collins, D.H. & Spillars, S.E. (2010). Proppant selection and its effect on results of fracturing treatments performed in shale formations. Society of Petroleum Engineers, Paper 135502.

  • Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46, 234–240.

    Article  Google Scholar 

  • United States Geological Survey (2014). USGS Minerals Yearbook—Mineral Commodity Summaries 2014, Department of the Interior, pp. 144–145.

  • Venkataraman, G., Babu Madhavan, B., Ratha, D. S., Antony, J. P., Goyal, R. S., Banglani, S., & Sinha Roy, S. (2000). Spatial modeling for base-metal mineral exploration through integration of geological data sets. Natural Resources Research, 9, 27–42.

    Article  Google Scholar 

  • Walker, N. (1992). Middle Proterozoic geologic evolution of the Llano uplift, Texas: Evidence from U-Pb zircon geochronometry. Geological Society of America Bulletin, 104, 494–504.

    Article  Google Scholar 

  • Watson, D. (1992). Contouring: A guide to the analysis and display of spatial data. London: Pergamon Press.

    Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015). Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research. doi:10.1007/s11053-014-9261-9.

    Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to give thanks to the thoughtful suggestions from colleagues, reviewers, notably Earle McBride, and John Carranza which greatly improved the manuscript. The funding for this study was provided by the State of Texas Advanced Resource Recovery program through the University of Texas at Austin, Bureau of Economic Geology, Mineral Resource Program. This study was greatly enhanced by regional mapping products, produced by the University of Texas at Austin Bureau of Economic Geology, and funded through the United States Geological Survey Mapping Cooperative Program, STATEMAP Award No. G14AC0020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Elliott.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elliott, B.A., Verma, R. & Kyle, J.R. Prospectivity Modeling for Cambrian–Ordovician Hydraulic Fracturing Sand Resources Around The Llano Uplift, Central Texas. Nat Resour Res 25, 389–415 (2016). https://doi.org/10.1007/s11053-016-9291-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-016-9291-6

Keywords

Navigation