Skip to main content

Advertisement

Log in

Prediction of size- and shape-dependent lithium storage capacity of carbon nano-spheres (quantum dots)

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Despite the large number of experimental works divulging the use of carbonaceous materials in LIB anodes, there are very few reports modeling the relationships between the characteristics of the electrode active materials and their lithium storage capacity. In this work, it is aimed to model the influence of the size and shape of carbon nano-spheres (carbon dots) on their lithium storage capacity. This study divides lithium storage of carbon nano-spheres into two segregate surface- and bulk-related mechanisms and calculates the capacity as the summation of these two components. Accordingly, a novel model employing a new factor called normalized volume, to accurately add the contribution of the surface lithium storage component to the bulk one, is introduced. The model also considers the size and morphology of the carbonaceous nano-particles simultaneously to estimate the specific capacity of the LIB anodes. The model revealed the fact that the decrease in the size of carbon nano-spheres below 20 nm dramatically results in the enhancement of the lithium storage capacity. The comparison of the estimated values with the experimental data of the literature confirmed the satisfactory consistency of the measured and predicted capacities. More importantly, this model is capable of being utilized as a fundamental tool to predict the specific lithium storage capacity of various carbon nano-structures considering their shape and dimension.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Babrzadeh A et al (2020) Synthesis and characterization of LiNi0. 5Co0. 2Mn0. 3O2 as a cathode material for lithium ion batteries and investigating the effect of calcination temperature on electrochemical performance of cathode. J Adv Mater Technol 9(1):67–76

    Google Scholar 

  • Chamaani A et al (2011) Thermodynamics and molecular dynamics investigation of a possible new critical size for surface and inner cohesive energy of Al nanoparticles. J Nanopart Res 13(11):6059–6067

    Article  CAS  Google Scholar 

  • Fan Y, Clavel G, Pinna N (2018) Effect of passivating Al2O3 thin films on MnO2/carbon nanotube composite lithium-ion battery anodes. J Nanoparticle Res 20(8):216

    Article  Google Scholar 

  • Fathi AR et al (2020) Optimization of cathode material components by means of experimental design for Li-Ion batteries. J Electron Mater 49(11):6547–6558

    Article  CAS  Google Scholar 

  • Ghorbanzadeh M et al (2018) Effect of Al and Zr co-doping on electrochemical performance of cathode Li[Li0.2Ni0.13Co0.13Mn0.54]O2 for Li-ion battery. Journal of Solid State Electrochemistry 22(4):1155–1163

    Article  CAS  Google Scholar 

  • Ghorbanzadeh M et al (2020) Influence of calcination temperature on the electrochemical performance of Li1.2 [Ni0. 13Co0. 13Mn0. 54] 0.985 Zr0. 015O2 as Li-rich cathode material for Li-ion batteries influence of calcination temperature on the electrochemical performance of Li 1.2 [Ni 0.13 Co 0.13 Mn 0.54] 0.985 Zr 0.015 O 2 as Li-rich Cathode Material for Li-ion Batteries 23(2):61–65

  • Gu H et al (2019) Carbon nanospheres induced high negative permittivity in nanosilver-polydopamine metacomposites. Carbon 147:550–558

    Article  CAS  Google Scholar 

  • Gu S et al (2020) Improved lithium storage capacity and high rate capability of nitrogen-doped graphite-like electrode materials prepared from thermal pyrolysis of graphene quantum dots. Electrochim Acta 354:136642

    Article  CAS  Google Scholar 

  • Jahangir V, Riahifar R, SahbaYaghmaee M (2016) A thermodynamic model for predicting surface melting and overheating of different crystal planes in BCC, FCC and HCP pure metallic thin films. Thin Solid Films 603:294–302

    Article  CAS  Google Scholar 

  • Javed M et al (2019) Carbon quantum dots from glucose oxidation as a highly competent anode material for lithium and sodium-ion batteries. Electrochim Acta 297:250–257

    Article  CAS  Google Scholar 

  • Jiao Z et al (2016) Intergrown SnO2–TiO2@graphene ternary composite as high-performance lithium-ion battery anodes. J Nanoparticle Res 18(10):307

    Article  Google Scholar 

  • Kaskhedikar NA, Maier J (2009) Lithium storage in carbon nanostructures. Adv Mater 21(25–26):2664–2680

    Article  CAS  Google Scholar 

  • Leng X et al (2021) Introduction to two-dimensional materials. Surface Rev Lett 5:2140005

    Article  Google Scholar 

  • Li L et al (2019) Li 4 Ti 5 O 12 quantum dot decorated carbon frameworks from carbon dots for fast lithium ion storage. Mater Chem Front 3(9):1761–1767

    Article  CAS  Google Scholar 

  • Liu Y et al (1996) Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon 34(2):193–200

    Article  CAS  Google Scholar 

  • Liu F et al (2019) Graphene aerogel-supported silicon@carbon hybrids with double buffering structure as anode for lithium-ion battery. J Electron Mater 48(12):8233–8242

    Article  CAS  Google Scholar 

  • Mao J et al (2019) Fe3O4-embedded and N-doped hierarchically porous carbon nanospheres as high-performance lithium ion battery anodes. ACS Sustain Chem Eng 7(3):3424–3433

    Article  CAS  Google Scholar 

  • Milke B et al (2014) A simple synthesis of MnN0.43@C nanocomposite: characterization and application as battery material. J Nanoparticle Res 16(12):2795

    Article  Google Scholar 

  • Nardecchia S et al (2013) Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem Soc Rev 42(2):794–830

    Article  CAS  Google Scholar 

  • Ni Z et al (2007) Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett 7(9):2758–2763

    Article  CAS  Google Scholar 

  • Nieto-Márquez A et al (2011) Carbon nanospheres: synthesis, physicochemical properties and applications. J Mater Chem 21(6):1664–1672

    Article  Google Scholar 

  • Nishihara H, Kyotani T (2012) Templated nanocarbons for energy storage. Adv Mater 24(33):4473–4498

    Article  CAS  Google Scholar 

  • Qing M et al (2019) Building nanoparticle-stacking MoO2-CDs via in-situ carbon dots reduction as high-performance anode material for lithium ion and sodium ion batteries. Electrochim Acta 319:740–752

    Article  CAS  Google Scholar 

  • Ramar A, Wang F-M (2020) Advances in polymer electrode materials for alkali metals (lithium, sodium and potassium)-ion rechargeable batteries. J Mater Sci: Mater Electron 31(24):21832–21855

    CAS  Google Scholar 

  • Roberts AD, Li X, Zhang H (2014) Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem Soc Rev 43(13):4341–4356

    Article  CAS  Google Scholar 

  • SadeghiGhazvini AA et al (2021) Co-electrophoretic deposition of Co3O4 and graphene nanoplates for supercapacitor electrode. Mater Lett 285:129195

    Article  CAS  Google Scholar 

  • SebtAhmadi S et al (2019) General modeling and experimental observation of size dependence surface activity on the example of Pt nano-particles in electrochemical CO gas sensors. Sens Actuators B Chem 285:310–316

    Article  CAS  Google Scholar 

  • Shaker M et al (2021) A criterion combined of bulk and surface lithium storage to predict the capacity of porous carbon lithium-ion battery anodes: lithium-ion battery anode capacity prediction. Carbon Lett 7:1–6

    Google Scholar 

  • Shaker M et al (2021) Biomass-derived porous carbons as supercapacitor electrodes – a review. New Carbon Mater 36(3):546–572

    Article  Google Scholar 

  • Shaker M, Salahinejad E (2018) A combined criterion of surface free energy and roughness to predict the wettability of non-ideal low-energy surfaces. Prog Org Coat 119:123–126

    Article  CAS  Google Scholar 

  • Shaker M, Riahifar R, Li Y (2020) A review on the superb contribution of carbon and graphene quantum dots to electrochemical capacitors’ performance: synthesis and application. FlatChem 22:100171

    Article  CAS  Google Scholar 

  • Shu M, Li X (2019) Electrospun MnxCo0.5−xSn0.5O2 and SnO2 porous nanofibers and nanoparticles as anode materials for lithium-ion battery. J Nanoparticle Res 21(8):179

    Article  Google Scholar 

  • Sun B et al (2015) Mesoporous carbon nanocube architecture for high-performance lithium–oxygen batteries. Adv Func Mater 25(28):4436–4444

    Article  CAS  Google Scholar 

  • Tang K et al (2012) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2(7):873–877

    Article  CAS  Google Scholar 

  • Vu A, Qian Y, Stein A (2012) Porous electrode materials for lithium-ion batteries – how to prepare them and what makes them special. Adv Energy Mater 2(9):1056–1085

    Article  CAS  Google Scholar 

  • Wang Y et al (2008) Preparation and characterization of carbon nanospheres as anode materials in lithium-ion secondary batteries. Ind Eng Chem Res 47(7):2294–2300

    Article  CAS  Google Scholar 

  • Wang L et al (2019) Ultra-high performance of Li/Na ion batteries using N/O dual dopant porous hollow carbon nanocapsules as an anode. J Mater Chem A 7(18):11117–11126

    Article  CAS  Google Scholar 

  • Xie F et al (2019) Unveiling the role of hydrothermal carbon dots as anodes in sodium-ion batteries with ultrahigh initial coulombic efficiency. J Mater Chem A 7(48):27567–27575

    Article  CAS  Google Scholar 

  • Xu Z et al (2019) MoO3/carbon dots composites for Li-ion battery anodes. ChemNanoMat 5(7):921–925

    Article  CAS  Google Scholar 

  • Yaghmaee M, Shokri B (2007) Effect of size on bulk and surface cohesion energy of metallic nano-particles. Smart Mater Struct 16(2):349

    Article  CAS  Google Scholar 

  • Yazami R (1999) Surface chemistry and lithium storage capability of the graphite–lithium electrode. Electrochim Acta 45(1–2):87–97

    Article  CAS  Google Scholar 

  • Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196(1):13–24

    Article  CAS  Google Scholar 

  • Zhao C et al (2016) Synthesis of selenium/EDTA-derived porous carbon composite as a Li–Se battery cathode. J Nanopart Res 18(7):201

    Article  Google Scholar 

  • Zheng G et al (2014) Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol 9(8):618

    Article  CAS  Google Scholar 

  • Zhou Z et al (2020) Heteroatoms-doped 3D carbon nanosphere cages embedded with MoS2 for lithium-ion battery. Electrochim Acta 332:135490

    Article  CAS  Google Scholar 

  • Zhou Q et al (2021) Carbon-decorated Na3V2(PO4)3 as ultralong lifespan cathodes for high-energy-density symmetric sodium-ion batteries. ACS Appl Mater Interfaces 13(21):25036–25043

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Chongqing 2D Materials Institute for its generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Shaker.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaker, M., Ghazvini, A.A.S., Yaghmaee, M.S. et al. Prediction of size- and shape-dependent lithium storage capacity of carbon nano-spheres (quantum dots). J Nanopart Res 23, 176 (2021). https://doi.org/10.1007/s11051-021-05306-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-021-05306-1

Keywords

Navigation