Skip to main content
Log in

Optimization of Cathode Material Components by Means of Experimental Design for Li-Ion Batteries

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The positive electrode of a Li-ion battery is made from active material, a binder and conductive material. In this work, the direct and interaction effects of these components on electrochemical performance of a Li-ion cell is studied using design of experiments. For this purpose, a two-level full factorial design was used and interactions were analyzed using analysis of variance. The content of carbon black and graphite as conductive materials and polyvinylidene difluoride as binder are considered as input parameters. Theactive material is NCM622 in the current work. Initial discharge capacity and Warburg coefficient obtained from impedance spectroscopy are output responses. Eleven experiments along with the central points were conducted to determine the relationship between process parameters and the output responses. This information is needed to optimize the output. It was observed that all three parameters are significant. In low carbon black and graphite content, the binder has a negative effect on both parameters, but in high levels of carbon black content it has a positive effect due to the better connectivity of carbon particles with each other. The results show that interaction of carbon black-binder and carbon black-graphite are also significant. Mathematical models were presented in order to optimize the parameters.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Schipper and D. Aurbach, Russ. J. Electrochem. 52, 1095 (2016).

    CAS  Google Scholar 

  2. J.B. Goodenough and K. Park, J. Am. Chem. Soc. 135, 1167 (2013).

    CAS  Google Scholar 

  3. J. Maier, Angew. Chem. Int. 52, 4998 (2013).

    CAS  Google Scholar 

  4. M.S. Whittingham, Chem. Rev. 114, 11414 (2014).

    CAS  Google Scholar 

  5. W. Li, B. Song, and A. Manthiram, Chem. Soc. Rev. 46, 3006 (2017).

    CAS  Google Scholar 

  6. R. Chen, T. Zhao, X. Zhang, L. Li, and F. Wu, Nanoscale Horiz. 1, 423 (2016).

    CAS  Google Scholar 

  7. C. Julien, A. Mauger, K. Zaghib, and H. Groult, Materials 9, 595 (2016).

    Google Scholar 

  8. T.F. Yi, J. Mei, Y.R. Zhu, and J. Power, Sources 316, 85 (2016).

    CAS  Google Scholar 

  9. J. Ma, P. Hu, G. Cui, and L. Chen, Chem. Mater. 28, 3578 (2016).

    CAS  Google Scholar 

  10. C. Tian, F. Lin, and M. Doeff, Acc. Chem. Res. 51, 89 (2018).

    CAS  Google Scholar 

  11. D. Andre, S.J. Kim, P. Lamp, S.F. Lux, F. Maglia, O. Paschos, and B. Stiaszny, J. Mater. Chem. A 3, 6709 (2015).

    CAS  Google Scholar 

  12. C. Tian, J. Electrochem. 165, A696 (2018).

    CAS  Google Scholar 

  13. M. Ghorbanzadeh, E. Allahyari, R. Riahifar, and S.M.M. Hadavi, J. Solid State Electr. 22, 1155 (2018).

    CAS  Google Scholar 

  14. M. Ghorbanzadeh, E. Allahyari, R. Riahifar, and S.M.M. Hadavi, J. Appl. Electrochem. 48, 75 (2018).

    CAS  Google Scholar 

  15. D. Zuo, G. Tian, X. Li, D. Chen, and K. Shu, J. Alloys Compd. 706, 24 (2017).

    CAS  Google Scholar 

  16. Y.H. Chen, C.W. Wang, X. Zhang, and A.M. Sastry, J. Power Sources 195, 2851 (2010).

    CAS  Google Scholar 

  17. H. Zheng, R. Yang, G. Liu, X. Song, and V.S. Battaglia, J. Phys. Chem. C 116, 4875 (2016).

    Google Scholar 

  18. R. Dominko, M. Gaberscek, J. Drofenik, M. Bele, S. Pejovnik, and J. Jamnik, J. Power Sources 119, 770 (2003).

    Google Scholar 

  19. R. Dominko, M. Gaberšček, J. Drofenik, M. Bele, and S. Pejovnik, Electrochem. Solid-State Lett. 4, A187 (2002).

    Google Scholar 

  20. R. Dominko, M. Gaberscek, M. Bele, J. Drofenik, E.M. Skou, A. Wursig, P. Novak, and J. Jamnik, J. Electrochem. Soc. 151, A1058 (2004).

    CAS  Google Scholar 

  21. C.C. Li and Y.W. Wang, J. Electrochem. Soc. 158, A1361 (2011).

    CAS  Google Scholar 

  22. W. Bauer, D. Nötzel, V. Wenzel, and H. Nirschl, J. Power Sources 288, 359 (2015).

    CAS  Google Scholar 

  23. D. Guy, B. Lestriez, R. Bouchet, V. Gaudefroy, and D. Guyomard, Electrochem. Solid-State Lett. 8, A17 (2004).

    Google Scholar 

  24. H. Bockholt, M. Indrikova, A. Netz, F. Golks, and A. Kwade, J. Power Sources 325, 140 (2016).

    CAS  Google Scholar 

  25. Q. Zhang, Z. Yu, P. Du, and C. Su, Recent Pat. Nanotechnol. 4, 100 (2010).

    CAS  Google Scholar 

  26. M.E. Spahr, D. Goers, A. Leone, S. Stallone, and E. Grivei, J. Power Sources 196, 3404 (2011).

    CAS  Google Scholar 

  27. L. Fransson, T. Eriksson, K. Edström, T. Gustafsson, and J.O. Thomas, J. Power Sources 101, 1 (2001).

    CAS  Google Scholar 

  28. Y. Cao, L. Xiao, X. Ai, and H. Yang, Electrochem. Solid-State Lett. 6, A30 (2003).

    CAS  Google Scholar 

  29. X.L. Li, Y.L. Zhang, H.F. Song, K. Du, H. Wang, and J.M. Huang, Int. J. Electrochem. Sci. 7, 7111 (2012).

    CAS  Google Scholar 

  30. S.T. Taleghani, B. Marcos, K. Zaghib, and G. Lantagne, J. Electrochem. Soc. 164, E3179 (2017).

    CAS  Google Scholar 

  31. C.M. Doyle, T.F. Fuller, and J. Newman, J. Electrochem. Soc. 140, 1526 (1993).

    CAS  Google Scholar 

  32. D.C. Montgomery, Design and Analysis of Experiments (New York: Wiley, 1997).

    Google Scholar 

  33. L. Su, J. Zhang, C. Wang, Y. Zhang, Z. Li, Y. Song, T. Jin, and Z. Ma, Appl. Energy 163, 201 (2016).

    CAS  Google Scholar 

  34. R. Mathieu, I. Baghdadi, O. Briat, P. Gyan, and J. Vinassa, Energy 141, 2108 (2017).

    CAS  Google Scholar 

  35. E. Hosseinzadeh, J. Marco, and P. Jennings, Energies 10, 1278 (2017).

    Google Scholar 

  36. P. Xiao, T. Lv, X. Chen, and C. Chang, Sci. Rep. 7, 1 (2017).

    Google Scholar 

  37. J. Zhang, J. Wang, Y. Liu, N. Nie, J. Gu, F. Yu, and W. Li, J. Mater. Chem. A 3, 2043 (2015).

    CAS  Google Scholar 

  38. L. Wang, J. Zhao, X. He, J. Gao, J. Li, C. Wan, and C. Jiang, Int. J. Electrochem. Sci. 7, 345 (2012).

    CAS  Google Scholar 

  39. M. Ghorbanzadeh, S. Farhadi, R. Riahifar, and S.M.M. Hadavi, New J. Chem. 42, 3444 (2018).

    CAS  Google Scholar 

  40. Y.K. Lee, Energies 12, 658 (2019).

    CAS  Google Scholar 

  41. M. Zarei-jelyani, M. Babaiee, S. Baktashian, and R. Eqra, J. Solid State Electrochem. 23, 2771 (2019).

    CAS  Google Scholar 

  42. C.K. Park, S. Bin Park, S. Oh, H. Jang, and W. Cho, Bull. Korean Chem. Soc. 32, 836 (2011).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Riahifar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathi, A.R., Riahifar, R., Raissi, B. et al. Optimization of Cathode Material Components by Means of Experimental Design for Li-Ion Batteries. J. Electron. Mater. 49, 6547–6558 (2020). https://doi.org/10.1007/s11664-020-08413-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08413-2

Keywords

Navigation