Skip to main content
Log in

Graphene Aerogel-Supported Silicon@Carbon Hybrids with Double Buffering Structure as Anode for Lithium-Ion Battery

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Graphene aerogel-supported silicon@carbon (SCG) hybrids with a double buffering structure were prepared via self-assembly and a solvothermal method. Nano-silicon (Si) particles coated with amorphous carbon were uniformly distributed on the surface of graphene. The amorphous carbon transformed from chitosan acted as a bridge to connect Si particles with graphene. The hierarchical structure of the resulting hybrids with multipores not only provided secondary cushions for the expansion of active Si during the charge/discharge process but also created fast access channels for the transmission of Li+. The SCG hybrid exhibited an excellent initial charge capacity of 1298.6 mAh g−1 and remained at 899.6 mAh g−1 after 100 cycles at 200 mA g−1. It also showed a remaining capacity of 737.6 mAh g−1 at 500 mA g−1 after 200 cycles. The capacity could reach up to 551.1 mAh g−1 at a high current density of 2000 mA g−1. These results suggest that the double buffer and porous structure can solve the problem of volume expansion of Si in Si-based hybrids, thus rendering them suitable for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Yu, X. Wang, S.M. Chen, X.Y. Liu, and S.J. Zhang, Nano Res. 10, 1 (2017).

    Google Scholar 

  2. W. Li, S. Chen, J. Yu, D. Fang, B. Ren, and S. Zhang, Green Energy Environ. 1, 91 (2016).

    Google Scholar 

  3. C. Stetson, T. Yoon, J. Coyle, W. Nemeth, M. Young, A. Norman, S. Pylypenko, C. Ban, C.S. Jiang, M. Al-Jassim, and A. Burrell, Nano Energy 55, 477 (2019).

    CAS  Google Scholar 

  4. Y.F. Chen, Q.N. Mao, L. Bao, T. Yang, X.X. Lu, N. Du, Y.G. Zhang, and Z.G. Ji, Ceram. Int. 44, 16660 (2018).

    CAS  Google Scholar 

  5. I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, and G. Yushin, Science 334, 75 (2011).

    CAS  Google Scholar 

  6. J. Wan, A. Kaplan, J. Zheng, X. Han, Y. Chen, N. Weadock, N. Faenza, S. Lacey, T. Li, and J. Guo, J. Mater. Chem. A 2, 6051 (2014).

    CAS  Google Scholar 

  7. N. Mahmood, T. Tang, and Y. Hou, Adv. Energy Mater. 6, 1600372 (2016).

    Google Scholar 

  8. K.K. Xiao, Q.L. Tang, Z. Liu, A.P. Hu, S.Y. Zhang, W.N. Deng, and X.H. Chen, Ceram. Int. 44, 3548 (2018).

    CAS  Google Scholar 

  9. S. Lou, X. Cheng, Y. Zhao, A. Lushington, J. Gao, Q. Li, P. Zuo, B. Wang, Y. Gao, and Y. Ma, Nano Energy 34, 15 (2017).

    CAS  Google Scholar 

  10. Z. Luo, Q. Xiao, G. Lei, Z. Li, and C. Tang, Carbon 98, 373 (2016).

    CAS  Google Scholar 

  11. B. Wang, X. Li, B. Luo, X. Zhang, Y. Shang, A. Cao, and L. Zhi, ACS Appl Mater. Inter. 5, 6467 (2013).

    CAS  Google Scholar 

  12. Y. Yao, M.T. Mcdowell, I. Ryu, H. Wu, N. Liu, L. Hu, W.D. Nix, and Y. Cui, Nano Lett. 11, 2949 (2011).

    CAS  Google Scholar 

  13. L. Su, J. Xie, Y. Xu, L. Wang, Y. Wang, and M. Ren, Phys. Chem. Chem. Phys. 17, 17562 (2015).

    CAS  Google Scholar 

  14. T.H. Hwang, Y.M. Lee, B.S. Kong, J.S. Seo, and J.W. Choi, Nano Lett. 12, 802 (2012).

    CAS  Google Scholar 

  15. H. Tang, Y.J. Zhang, Q.Q. Xiong, J.D. Cheng, Q. Zhang, X.L. Wang, C.D. Gu, and J.P. Tu, Electrochim. Acta 156, 86 (2015).

    CAS  Google Scholar 

  16. Y.F. Zhao, H.T. Zhang, A. Liu, Y.Z. Jiao, J.J. Shim, and S.J. Zhang, Electrochim. Acta 258, 343 (2017).

    CAS  Google Scholar 

  17. C. Martin, O. Crosnier, R. Retoux, D. Bélanger, D.-M. Schleich, and T. Brousse, Adv. Funct. Mater. 21, 3524 (2011).

    CAS  Google Scholar 

  18. W. Wang and P.N. Kumta, ACS Nano 4, 2233 (2010).

    CAS  Google Scholar 

  19. H.D. Chen, X.H. Hou, L.N. Qu, H.Q. Qin, Q. Ru, Y. Huang, S.J. Hu, and K.-H. Lam, J. Mater. Sci.: Mater. Electron. 28, 250 (2017).

    CAS  Google Scholar 

  20. Y.Z. Jiao, H.T. Zhang, T. Dong, P. Shen, Y.J. Cai, H.L. Zhang, and S.J. Zhang, J. Mater. Sci. 52, 3233 (2017).

    CAS  Google Scholar 

  21. B. Li, S. Yang, S. Li, B. Wang, and J. Liu, Adv. Energy Mater. 5, 1500289 (2015).

    Google Scholar 

  22. L. Tao, G. Rousse, J.N. Chotard, L. Dupont, S. Bruyère, D. Hanžel, G. Mali, R. Dominko, S. Levasseur, and C. Masquelier, J. Mater. Chem. A 2, 2060 (2014).

    CAS  Google Scholar 

  23. D. He, F. Bai, L. Li, L. Shen, H.H. Kung, and N. Bao, Electrochim. Acta 169, 409 (2015).

    CAS  Google Scholar 

  24. X. Liu, Y. Du, L. Hu, X. Zhou, Y. Li, Z. Dai, and J. Bao, J. Phys. Chem. C 119, 5848 (2015).

    CAS  Google Scholar 

  25. E.J. Brisbois, R.P. Davis, A.M. Jones, T.C. Major, R.H. Bartlett, M.E. Meyerhoff, and H. Handa, J. Mater. Chem. B 3, 1639 (2015).

    CAS  Google Scholar 

  26. Q. Pan, P. Zuo, S. Lou, T. Mu, C. Du, X. Cheng, Y. Ma, Y. Gao, and G. Yin, J. Alloy. Comp. 723, 434 (2017).

    CAS  Google Scholar 

  27. K. Zhang, Y. Xia, Z. Yang, R. Fu, C. Shen, and Z. Liu, Rsc Adv. 7, 24305 (2017).

    Google Scholar 

  28. Y.J. Zhang, H. Chu, L.W. Zhao, and L.F. Yuan, J. Mater. Sci. Mater. Electron. 28, 6657 (2017).

    CAS  Google Scholar 

  29. Q. Liu, Z. Cui, R. Zou, J. Zhang, K. Xu, and J. Hu, Small 13, 1603754 (2017).

    Google Scholar 

  30. N. Lin, J. Zhou, L. Wang, Y. Zhu, and Y. Qian, ACS Appl. Mater. Int. 7, 409 (2015).

    CAS  Google Scholar 

  31. Q. Li, D. Chen, K. Li, J. Wang, and J. Zhao, Electrochim. Acta 202, 140 (2016).

    CAS  Google Scholar 

  32. H. Lin, F. Liu, X. Wang, Y. Ai, Z. Yao, L. Chu, S. Han, and X. Zhuang, Electrochim. Acta 191, 705 (2016).

    CAS  Google Scholar 

  33. J.K. Lee, K.B. Smith, C.M. Hayner, and H.H. Kung, Chem. Commun. 46, 2025 (2010).

    CAS  Google Scholar 

  34. X. Hu, Y. Jin, B. Zhu, Y. Tan, S. Zhang, L. Zong, Z. Lu, and J. Zhu, Chemnanomat 2, 671 (2016).

    CAS  Google Scholar 

  35. C.J. Fu, C.L. Song, L.L. Liu, W.L. Zhao, and X.D. Xie, Int. J. Electrochem. Sci. 11, 154 (2016).

    CAS  Google Scholar 

  36. H.L. Lin, Q. Huang, J.Z. Wang, J.Z. Jiang, F. Liu, Y.W. Chen, C. Wang, D.L. Lu, and S. Han, Electrochim. Acta 191, 444 (2016).

    CAS  Google Scholar 

  37. Y. Huang, D. Wu, J. Wang, S. Han, L. Lv, F. Zhang, and X. Feng, Small 10, 2226 (2014).

    CAS  Google Scholar 

  38. W. Li, X.Z. Tang, H.B. Zhang, Z.G. Jiang, Z.Z. Yu, X.S. Du, and Y.W. Mai, Carbon 49, 4724 (2011).

    CAS  Google Scholar 

  39. H.C. Tao, X.L. Yang, L.L. Zhang, and S.B. Ni, J. Electroanal. Chem. 739, 36 (2015).

    CAS  Google Scholar 

  40. C. Botas, P. Alvarez, C. Blanco, M.D. Gutierrez, P. Ares, R. Zamani, J. Arbiol, J. Morante, and R. Menendez, Rsc Adv. 2, 9643 (2012).

    CAS  Google Scholar 

  41. L. Lai, L. Wang, H. Yang, N.G. Sahoo, X.T. Qian, J. Liu, C.K. Poh, S.H. Lim, Z. Shen, and J. Lin, Nano Energy 1, 723 (2012).

    CAS  Google Scholar 

  42. K. Kierzek and G. Gryglewicz, J. Phys. Chem. Solids 104, 117 (2017).

    CAS  Google Scholar 

  43. T. Yang, X. Tian, X. Li, K. Wang, Z. Liu, Q. Guo, and Y. Song, Chemistry 23, 2165 (2017).

    CAS  Google Scholar 

  44. T. Jaumann, M. Herklotz, M. Klose, K. Pinkert, S. Oswald, J. Eckert, and L. Giebeler, Chem. Mater. 27, 37 (2015).

    CAS  Google Scholar 

  45. Y. Chen, S. Zeng, J. Qian, Y. Wang, Y. Cao, H. Yang, and X. Ai, ACS Appl. Mater. Inter. 6, 3508 (2014).

    CAS  Google Scholar 

  46. W. Zhai, Q. Ai, L. Chen, S. Wei, D. Li, L. Zhang, P. Si, J. Feng, and L. Ci, Nano Res. 10, 4274 (2017).

    CAS  Google Scholar 

  47. U. Kasavajjula, C. Wang, and A.J. Appleby, J. Power Sources 163, 1003 (2007).

    CAS  Google Scholar 

  48. Q. Xu, J.Y. Li, J.K. Sun, Y.X. Yin, L.J. Wan, and Y.G. Guo, Adv. Energy Mater. 7, 1601481 (2016).

    Google Scholar 

Download references

Acknowledgments

This project was supported by the Key Science and Technology Special Project of Zhengzhou (project No. 174PZDZX570), the Henan Open Project of Science and Technology (Project No. 182106000022), and the Henan Research Project of Science and Technology (Project No. 182102310802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxia Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 565 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Liu, Y., Ruan, J. et al. Graphene Aerogel-Supported Silicon@Carbon Hybrids with Double Buffering Structure as Anode for Lithium-Ion Battery. J. Electron. Mater. 48, 8233–8242 (2019). https://doi.org/10.1007/s11664-019-07672-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07672-y

Keywords

Navigation