Skip to main content
Log in

Bioinformatics study of delta-12 fatty acid desaturase 2 (FAD2) gene in oilseeds

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Fatty acid desaturases constitute a group of enzymes that introduce double bonds into the hydrocarbon chains of fatty acids to produce unsaturated fatty acids. In plants, seed-specific delta-12 fatty acid desaturase 2 (FAD2) is responsible for the high content of linoleic acid by inserting a double bond at the delta-12 (omega-6) position of oleic acid. In this study, sixteen FAD2 and FAD2-2 protein sequences from oilseeds were analyzed by computational tools including two databases of the NCBI and EXPASY and data management tools such as SignalP, TMHMM, Psort, ProtParam, TargetP, PLACE and PlantCARE. These services were used to predict the protein properties such as molecular mass, pI, signal peptide, transmembrane and conserved domains, secondary and spatial structures. The polypeptide sequences were aligned and a neighbour-joining tree was constructed using MEGA5.1 to elucidate phylogenetic relationships among FAD2 genes. Based on the phylogenetic analysis species with high similarity in FAD2 sequence grouped together. FAD2 proteins include highly conserved histidine-rich motifs (HECGHH, HRRHH and HV[A/C/T]HH) that are located by three to five transmembrane anchors. For further investigations Sesamum indicum FAD2 was selected and analyzed by bioinformatics tools. Analysis showed no N-terminal signal peptide for probable localization of FAD2 protein in cytoplasmic organelles such as chloroplast, mitochondria and Golgi. Instead the C-terminal signaling motif YNNKL, Y(K/N)NKF or YRNKI allows FAD2 protein to selectively bind to and embed in the endoplasmic reticulum. FAD2 promoter contains different cis-regulatory elements involve in the biotic and abiotic stresses response or control of gene expression specifically in seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Miquel MF (1994) High-oleate oilseeds fail to develop at low temperature. Plant Physiol 106(2):421–427

    PubMed Central  CAS  PubMed  Google Scholar 

  2. McKevith B (2005) Nutritional aspects of oilseeds. Nutr Bull 30(1):13–26

    Article  Google Scholar 

  3. Clemente TE, Cahoon EB (2009) Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol 151(3):1030–1040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Zäuner S, Jochum W, Bigorowski T, Benning C (2012) A cytochrome b5-containing plastid-located fatty acid desaturase from Chlamydomonas reinhardtii. Eukaryot cell 11(7):856–863

    Article  PubMed Central  PubMed  Google Scholar 

  5. Cao S, Zhou X-R, Wood CC, Green AG, Singh SP, Liu L, Liu Q (2013) A large and functionally diverse family of FAD2 genes in safflower (Carthamus tinctorius L.). BMC Plant Biol 13(1):5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sharma A, Chauhan RS (2012) In silico identification and comparative genomics of candidate genes involved in biosynthesis and accumulation of seed oil in plants. Int. J. Genomics 2012:14

    Google Scholar 

  7. Chapman KD, Austin-Brown S, Sparace SA, Kinney AJ, Ripp KG, Pirtle IL, Pirtle RM (2001) Transgenic cotton plants with increased seed oleic acid content. J Am Oil Chem Soc 78(9):941–947

    Article  CAS  Google Scholar 

  8. Suresha GS, Santha IM (2013) Molecular cloning and in silico analysis of novel oleate desaturase gene homologues from Brassica juncea through sub-genomic library approach. Plant Omics J 6:55–64

    CAS  Google Scholar 

  9. Chi X, Yang Q, Pan L, Chen M, He Y, Yang Z, Yu S (2011) Isolation and characterization of fatty acid desaturase genes from peanut (Arachis hypogaea L.). Plant Cell Rep 30(8):1393–1404

    Article  CAS  PubMed  Google Scholar 

  10. Kosová K, Práil I, Vítámvás P (2013) Protein contribution to plant salinity response and tolerance acquisition. Int J Mol Sci 14(4):6757–6789

    Article  PubMed Central  PubMed  Google Scholar 

  11. Hernández ML, Mancha M, Martinez-Rivas JM (2005) Molecular cloning and characterization of genes encoding two microsomal oleate desaturases (FAD2) from olive. Phytochemistry 66(12):1417–1426

    Article  PubMed  Google Scholar 

  12. Kang J, Snapp AR, Lu C (2011) Identification of three genes encoding microsomal oleate desaturases (FAD2) from the oilseed crop Camelina sativa. Plant Physiol Biochem 49(2):223–229

    Article  CAS  PubMed  Google Scholar 

  13. Yang Q, Fan C, Guo Z, Qin J, Wu J, Li Q, Fu T, Zhou Y (2012) Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theor Appl Genet 125(4):715–729

    Article  CAS  PubMed  Google Scholar 

  14. Chi X, Yang Q, Lu Y, Wang J, Zhang Q, Pan L, Chen M, He Y, Yu S (2011) Genome-wide analysis of fatty acid desaturases in soybean (Glycine max). Plant Mol Biol Rep 29(4):769–783

    Article  CAS  Google Scholar 

  15. Pham A-T, Lee J-D, Shannon JG, Bilyeu KD (2011) A novel FAD2-1A allele in a soybean plant introduction offers an alternate means to produce soybean seed oil with 85 % oleic acid content. Theor Appl Genet 123(5):793–802

    Article  CAS  PubMed  Google Scholar 

  16. Schlueter JA, Vasylenko-Sanders IF, Deshpande S, Yi J, Siegfried M, Roe BA, Schlueter SD, Scheffler BE, Shoemaker RC (2007) The FAD2 gene family of soybean. Crop Sci 47(Supplement 1):S-14–S-26

    Google Scholar 

  17. Hernández ML, Padilla M, Mancha M, Martinez-Rivas JM (2009) Expression analysis identifies FAD2-2 as the olive oleate desaturase gene mainly responsible for the linoleic acid content in virgin olive oil. J Agric Food Chem 57(14):6199–6206

    Article  PubMed  Google Scholar 

  18. Ohlrogge J (1995) Lipid biosynthesis. Plant Cell 7(7):957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Weber H (2002) Fatty acid-derived signals in plants. Trends Plant Sci 7(5):217–224

    Article  CAS  PubMed  Google Scholar 

  20. Mozaffarian D, Katan MB, Ascherio A, Stampfer MJ, Willett WC (2006) Trans fatty acids and cardiovascular disease. N Engl J Med 354(15):1601–1613

    Article  CAS  PubMed  Google Scholar 

  21. Hitz WD, Carlson TJ, Booth JR Jr, Kinney AJ, Stecca KL, Yadav NS (1994) Cloning of a higher-plant plastid [omega]-6 fatty acid desaturase cDNA and its expression in a cyanobacterium. Plant Physiol 105(2):635–641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Pham A-T, Lee J-D, Shannon JG, Bilyeu KD (2010) Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biol 10(1):195

    Article  PubMed Central  PubMed  Google Scholar 

  23. Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A (2004) High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet 108(8):1492–1502

    Article  CAS  PubMed  Google Scholar 

  24. Schuppert GF, Tang S, Slabaugh MB, Knapp SJ (2006) The sunflower high-oleic mutant Ol carries variable tandem repeats of FAD2-1, a seed-specific oleoyl-phosphatidyl choline desaturase. Mol Breeding 17(3):241–256

    Article  CAS  Google Scholar 

  25. Peng Q, Hu Y, Wei R, Zhang Y, Guan C, Ruan Y, Liu C (2010) Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds. Plant Cell Rep 29(4):317–325

    Article  CAS  PubMed  Google Scholar 

  26. Petersen TN, Brunak Sr, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786

    Article  CAS  PubMed  Google Scholar 

  27. Xia J-X, Ikeda M, Shimizu T (2004) ConPred_elite: a highly reliable approach to transmembrane topology prediction. Comput Biol Chem 28(1):51–60

    Article  CAS  PubMed  Google Scholar 

  28. Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids 1. Annu Rev Plant Biol 49(1):611–641

    Article  CAS  Google Scholar 

  29. Beisson F, Koo AJK, Ruuska S, Schwender J Jr, Pollard M, Thelen JJ, Paddock T, Salas JJ, Savage L, Milcamps A (2003) Arabidopsis genes involved in acyl lipid metabolism: a 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant physiol 132(2):681–697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Muller PA Jr (2011) Comparative sequence analysis of fatty acid desaturase 2 (FAD2) cDNA sequences from the compositae [Asteraceae]

  31. Shanklin J, Whittle E, Fox BG (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33(43):12787–12794

    Article  CAS  PubMed  Google Scholar 

  32. McCartney AW, Dyer JM, Dhanoa PK, Kim PK, Andrews DW, McNew JA, Mullen RT (2004) Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. Plant J 37(2):156–173

    Article  CAS  PubMed  Google Scholar 

  33. Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: The proteomics protocols handbook. Springer, p 571–607

  34. Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35(suppl 2):W585–W587

    Article  PubMed Central  PubMed  Google Scholar 

  35. Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10(1):1–6

    Article  CAS  PubMed  Google Scholar 

  36. Horiguchi H, Yurimoto H, Goh T-K, Nakagawa T, Kato N, Sakai Y (2001) Peroxisomal catalase in the methylotrophic yeast Candida boidinii: transport efficiency and metabolic significance. J Bacteriol 183(21):6372–6383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Kurdrid P, Subudhi S, Hongsthong A, Ruengjitchatchawalya M, Tanticharoen M (2005) Functional expression of Spirulina-Δ6 desaturase gene in yeast, Saccharomyces cerevisiae. Mol Biol Rep 32(4):215–226

    Article  CAS  PubMed  Google Scholar 

  38. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132

    Article  CAS  PubMed  Google Scholar 

  39. Minto RE, Gibbons WJ Jr, Cardon TB, Lorigan GA (2002) Synthesis and conformational studies of a transmembrane domain from a diverged microsomal Δ12-desaturase. Anal Biochem 308(1):134–140

    Article  CAS  PubMed  Google Scholar 

  40. Kim MJ, Kim H, Shin JS, Chung C-H, Ohlrogge JB, Suh MC (2006) Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5′-UTR intron. Mol Genet Genomics 276(4):351–368

    Article  CAS  PubMed  Google Scholar 

  41. Vicente-Carbajosa J, Moose SP, Parsons RL, Schmidt RJ (1997) A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Sci 94(14):7685–7690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Yamamoto MP, Onodera Y, Touno SM, Takaiwa F (2006) Synergism between RPBF Dof and RISBZ1 bZIP activators in the regulation of rice seed expression genes. Plant Physiol 141(4):1694–1707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Papadakis ED, Nicklin SA, Baker AH, White SJ (2004) Promoters and control elements: designing expression cassettes for gene therapy. Curr Gene Ther 4(1):89–113

    Article  CAS  PubMed  Google Scholar 

  44. Kawachi M, Kobae Y, Mimura T, Maeshima M (2008) Deletion of a histidine-rich loop of AtMTP1, a vacuolar Zn2+/H+ antiporter of Arabidopsis thaliana, stimulates the transport activity. J Biol Chem 283(13):8374–8383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Wang Y, Jin S, Wang M, Zhu L, Zhang X (2013) Isolation and characterization of a conserved domain in the eremophyte H+-PPase family. PLoS ONE 8(7):e70099

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Dehghan Nayeri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan Nayeri, F., Yarizade, K. Bioinformatics study of delta-12 fatty acid desaturase 2 (FAD2) gene in oilseeds. Mol Biol Rep 41, 5077–5087 (2014). https://doi.org/10.1007/s11033-014-3373-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3373-5

Keywords

Navigation