Skip to main content
Log in

Mapping QTLs for phytochemical compounds and fruit quality in peach

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Genetic control and location of QTLs associated with phytochemical compounds and fruit quality in peach [Prunus persica (L.) Batsch] were evaluated using an F2 mapping population (ZC2) derived from cross between ‘Zin Dai’ × ‘Crimson Lady’. Antioxidant capacity, accumulation of phenolic compounds (total phenolics, flavonoids, and anthocyanins), and fruit quality traits (fruit diameter, fruit weight, fruit firmness, soluble solids concentration, titratable acidity, and ripening index) were evaluated for 2 years (2013–2014). Fourteen QTLs for phytochemical and fruit quality traits were identified in 5 LGs, with two QTL clusters (qPC.ZC_5.1_2014 and qPC.ZC_7.1) observed on LGs 5 and 7. The QTL cluster qPC.ZC_5.1_2014 was associated with antioxidant capacity, flavonoids, anthocyanin content, and SSC, while qPC.ZC_7.1 exhibited association only with flavonoids and fruit ripening index. QTL clusters associated with different fruit quality traits were observed on LGs 1 and 6. Candidate gene analyses of the QTL cluster on LG5 (qPC.ZC_5.1_2014) revealed 14 candidate genes in peach with functional annotation related to biosynthesis pathway of phytochemical compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ATCYN:

Anthocyanin

C3GE:

Cyanidin-3-glucoside equivalents

CE:

Catechin equivalents

CG:

Candidate gene

FRDIA:

Fruit diameter

FRFRM:

Fruit firmness

FRRP:

Fruit ripening, ripening index

FRW:

Fruit weight

FV:

Flavonoids

FW:

Fresh weight

GAE:

Gallic acid equivalents

GDR:

Genome Database for Rosaceae

IM:

Interval mapping

KW:

Kruskal-Wallis

LG:

Linkage group

LOD:

Logarithm of the odds

MQM:

Multiple QTL mapping

PHE:

Total phenolics

QTL:

Quantitative trait loci

RAC:

Relative antioxidant capacity

SNP:

Single nucleotide polymorphism

SSC:

Soluble solids concentration

TE:

Trolox equivalents

TITA:

Titratable acidity

ZC2:

Zin Dai × Crimson Lady

References

  • Abdelghafar A, Burrell R, Reighard G, Gasic K (2018) Antioxidant capacity and bioactive compounds accumulation in modern peach breeding germplasm. J Am Pomol Soc 72(1):40–69

    Google Scholar 

  • Abidi W, Cantín CM, Buhner T, Gonzalo MJ, Moreno MA, Gogorcena Y (2012) Genetic control and location of QTLs involved in antioxidant capacity and fruit quality traits in peach [Prunus persica (L.) Batsch]. Acta Hortic 962:129–134. https://doi.org/10.17660/ActaHortic.2012.962.17

    Article  Google Scholar 

  • Abidi W, Jimenez S, Moreno MA, Gogorcena Y (2011) Evaluation of antioxidant compounds and total sugar content in a nectarine [Prunus persica (L.) Batsch] progeny. Int J Mol Sci 12:6919–6935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Abdul Jaleel C, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175. https://doi.org/10.3109/07388550903524243

    Article  CAS  PubMed  Google Scholar 

  • Arús P, Verde I, Sosinski B, Zhebentyayeva T, Abbott AG (2012) The peach genome. Tree Genet Genomes 8:531–547

    Article  Google Scholar 

  • Azuma A, Yakushiji H, Kobayashi (2012) Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236:1067–1080. https://doi.org/10.1007/s00425-012-1650-x

    Article  CAS  PubMed  Google Scholar 

  • Bassett CL, Nickerson ML, Farrell R, Artlip TS, El Ghaouth A, Wilson CHL et al (2005) Characterization of an S-locus receptor protein kinase-like gene from peach. Tree Physiol 25:403–411

    Article  CAS  PubMed  Google Scholar 

  • Bielenberg D, Gasic K, Chaparro JX (2009) An introduction to peach (Prunus persica). In: Folta KM, Gardiner SE (eds) Genetics and genomics of Rosaceae. Springer, New York, pp 223–234

    Chapter  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohner J, Bangerth F (1988) Effects of fruit set sequence and defoliation on cell number, cell size and hormone levels of tomato fruits (Lycopersicon esculentum Mill.) within a truss. J Plant Growth Regul 7:141–155

    CAS  Google Scholar 

  • Boss PK, Davies C, Robinson SP (1996) Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Mol Biol 32(3):565–569

    Article  CAS  PubMed  Google Scholar 

  • Brown AF, Yousef GG, Guzman I, Chebrolu KK, Werner DJ, Parker M et al (2014) Variation of carotenoids and polyphenolics in peach and implications on breeding for modified phytochemical profiles. J Am Soc Hortic Sci 139:676–686

  • Bureau S, Renard CMGC, Reich M, Ginies C, Audergon J (2009) Change in anthocyanin concentrations in red apricot fruits during ripening. LWT Food Sci Technol 42:372–377

    Article  CAS  Google Scholar 

  • Byrne DH, Nikolic AN, Burns EE (1991) Variability in sugars, acids, firmness, and color characteristics of 12 peach genotypes. J Am Soc Hortic Sci 116:1004–1006

  • Cantín CM, Moreno MA, Gogorcena Y (2009) Evaluation of the antioxidant capacity, phenolic compounds, and vitamin C content of different peach and nectarine [Prunus persica (L.) batsch] breeding progenies. J Agric Food Chem 57:4586–4592

    Article  CAS  PubMed  Google Scholar 

  • Cevallos-Casals BA, Byrne D, Okie WR, Cisneros-Zevallos L (2006) Selecting new peach and plum genotypes rich in phenolic compounds and enhanced functional properties. Food Chem 96:273–280

    Article  CAS  Google Scholar 

  • Chalker-Scott, L and Fuchigami LH (2018) The role of phenolic compounds in plant stress responses. In: Low temperature stress physiology in crops by P.H. Li (ed) CRC Press Taylor and Francis Group, pp. 211. https://doi.org/10.1201/9781351074186

  • Cirilli M, Bassi D, Ciacciulli A (2016) Sugars in peach fruit: a breeding perspective. Hortic Res 3:15067. https://doi.org/10.1038/hortres.2015.67

  • Da Silva Linge C, Antanaviciute L, Abdelghafar A, Arús P, Bassi D, Rossini L et al (2018) High-density multi-population consensus genetic linkage map for peach. PLoS One 13(11):e0207724. https://doi.org/10.1371/journal.pone.0207724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Silva Linge C, Bassi D, Bianco L, Pacheco I, Pirona R, Rossini L (2015) Genetic dissection of fruit weight and size in an F2 peach (Prunus persica (L.) Batsch) progeny. Mol Breed 35:7. https://doi.org/10.1007/s11032-015-0271-z

    Article  Google Scholar 

  • Dalla Valle AZ, Mignani I, Spinardi A, Galvano F, Ciappellano S (2007) The antioxidant profile of three different peaches cultivars (Prunus persica) and their short-term effect on antioxidant status in human. Eur Food Res Technol 225:167–172

    Article  CAS  Google Scholar 

  • DeJong TM (1999) Developmental and environmental control of dry-matter partitioning in peach. HortScience 34:1037–1040

    Article  Google Scholar 

  • Desnoues E, Baldazzi V, Génard M, Mauroux J-B, Lambert P, Confolent C, Quilot-Turion B (2016) Dynamic QTLs for sugars and enzyme activities provide an overview of genetic control of sugar metabolism during peach fruit development. J Exp Bot 67:3419–3431. https://doi.org/10.1093/jxb/erw169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A et al (1999) Mapping QTL controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98:18–31

    Article  CAS  Google Scholar 

  • Dirlewanger E, Arús P (2004) Markers in fruit tree breeding: improvement of peach. In: Lorz H, Wenzel G (eds) Molecular marker systems in plant breeding and crop improvement. Springer-verlag, Berlin, pp 279–302

    Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W et al (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci U S A 101:9891–9896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dirlewanger E, Cosson P, Renaud C, Monet R, Poëssel JL, Moing A (2006) New detection of QTLs controlling major fruit quality components in peach. Acta Hortic 713:65–72

    Article  CAS  Google Scholar 

  • Dirlewanger E, Quero-García J, Le Dantec L, Lambert P, Ruiz D, Dondini L et al (2012) Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. J Hered 109:280–292

    Article  CAS  Google Scholar 

  • Donoso JM, Picañol R, Serra O, Howad W, Alegre S, Arús P, Eduardo I (2016) Exploring almond genetic variability useful for peach improvement: mapping major genes and QTLs in two interspecific almond x peach populations. Mol Breed. 36:1–17. https://doi.org/10.1007/s11032-016-0441-7

  • Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A et al (2011) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes 7:323–335

    Article  Google Scholar 

  • Eduardo I, Chietera G, Pirona R, Pacheco I, Troggio M, Banchi E et al (2013) Genetic dissection of aroma volatile compounds from the essential oil of peach fruit: QTL analysis and identification of candidate genes using dense SNP maps. Tree Genet Genomes 9:189–204

    Article  Google Scholar 

  • Etienne C, Rothan C, Moing A, Plomion C, Bodénès C, Svanella-Dumas L et al (2002) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:145–159

    Article  CAS  PubMed  Google Scholar 

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930

    Article  PubMed  Google Scholar 

  • Font i Forcada C, Guajardo V, Chin-Wo SR, Moreno MA (2019) Association mapping analysis for fruit quality traits in Prunus persica using SNP markers. Front Plant Sci 17(9):2005. https://doi.org/10.3389/fpls.2018.02005

    Article  Google Scholar 

  • Font i Forcada C, Gradziel TM, Gogorcena Y, Moreno MA (2014) Phenotypic diversity among local Spanish and foreign peach and nectarine [Prunus persica (L.) Batsch] accessions. Euphytica 197:261–277

    Article  Google Scholar 

  • Font i Forcada C, Oraguzie N, Igartua E, Moreno MA, Gogorcena Y (2013) Population structure and marker–trait associations for pomological traits in peach and nectarine cultivars. Tree Genet Genomes 9:331–349

    Article  Google Scholar 

  • Fresnedo-Ramírez J, Bink MCAM, van de Weg E, Famula TR, Crisosto CH, Frett TJ et al (2015) QTL mapping of pomological traits in peach and related species breeding germplasm. Mol Breed 35:166. https://doi.org/10.1007/s11032-015-0357-7

    Article  Google Scholar 

  • Fresnedo-Ramírez J, Frett TJ, Sandefur PJ, Salgado-Rojas A, Clark JR, Gasic K et al (2016) QTL mapping and breeding value estimation through pedigree-based analysis of fruit size and weight in four diverse peach breeding programs. Tree Genet Genomes 12:25. https://doi.org/10.1007/s11295-016-0985-z

    Article  Google Scholar 

  • Frett TJ, Gasic K, Clark JR, Byrne D, Gradziel T, Crisosto C (2012) Standardized phenotyping for fruit quality in peach [Prunus persica (L.) Batsch]. J Am Pomol Soc 66:214–219

    Google Scholar 

  • Frett TJ, Reighard GL, Okie WO, Gasic K (2014) Mapping quantitative trait loci associated with blush in peach [Prunus persica (L.) Batsch]. Tree Genet Genomes 10:367–381. https://doi.org/10.1007/s11295-013-0692-y

    Article  Google Scholar 

  • Gasic K, Abdelghafar A, Reighard G, Windham J, Ognjanov M (2016) Fruit maturity affects fruit quality and bioactive compound accumulation in peach. Acta Hortic 1119:197–202. https://doi.org/10.17660/ActaHortic.2016.1119.27

    Article  Google Scholar 

  • Gil MI, Tomás-Barberán FA, Hess-Pierce B, Kader AA (2002) Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. J Agric Food Chem 50:4976–4982

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Hernández Mora JR, Micheletti D, Bink M, Van de Weg E, Cantín C, Nazzicari N (2017) Integrated QTL detection for key breeding traits in multiple peach progenies. BMC Genomics 18:404

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho LC (1996) Tomato. In: Zamski E, Schaffer A (eds) Photoassimilate distribution in plants and crops source–sink relationship. Marcel Dekker, Inc., New York, pp 709–728

    Google Scholar 

  • Illa E, Eduardo I, Audergon JM, Barale F, Dirlewanger E, Li X et al (2011) Saturating the Prunus (stone fruits) genome with candidate genes for fruit quality. Mol Breed 28:667–682

    Article  Google Scholar 

  • Jung S, Lee T, Cheng CH, Buble K, Zheng P, Yu J, Humann J, Ficklin SP, Gasic K, Scott K, Frank M, Ru S, Hough H, Evans K, Peace C, Olmstead M, DeVetter L, McFerson J, Coe M, Wegrzyn JL, Staton ME, Abbott AG, Main D (2019) 15 years of GDR: new data and functionality in the genome database for Rosaceae. Nucleic Acids Res 47(D1):D1137–D1145. https://doi.org/10.1093/nar/gky1000

    Article  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30. https://doi.org/10.1093/nar/28.1.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kassim A, Poette J, Paterson A, Zait D, McCallum S, Woodhead M et al (2009) Environmental and seasonal influences on red raspberry anthocyanin antioxidant contents and identification of quantitative traits loci (QTL). Mol. Nutr. Food Res 53:625–634

    CAS  Google Scholar 

  • Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555

    Article  CAS  PubMed  Google Scholar 

  • Lambert P, Campoy JA, Pacheco I, Mauroux J-B, Linge CD, Micheletti D et al (2016) Identifying SNP markers tightly associated with six major genes in peach [Prunus persica (L.) Batsch] using a high-density SNP array with an objective of marker-assisted selection (MAS). Tree Genet Genomes 12:121. https://doi.org/10.1007/s11295-016-1080-1

    Article  Google Scholar 

  • Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI (2004) Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16:596–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Li P, Wang Y, Dong R, Yu H, Hou B (2014) Genome-wide identification and phylogenetic analysis of Family-1 UDP glycosyltransferases in maize (Zea mays). Planta 239:1265–1279. https://doi.org/10.1007/s00425-014-2050-1

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wei JK, Li ZQ, Lei AN, Liu MH (2015) Quantitative trait locus analysis of leaf morphological characters, yield-related traits, and secondary metabolite contents in Eucommia ulmoides. Genet Mol Res 14(4):17871–17884

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Cao K, Zhu G, Fang W, Chen C, Wang X, Zhao P, Guo J, Ding T, Guan L, Zhang Q, Guo W, Fei Z, Wang L (2019) Genomic analyses of an extensive collection of wild and cultivated accessions provide new insights into peach breeding history. Genome Biol 20:36. https://doi.org/10.1186/s13059-019-1648-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Libertini E, Li Y, McQueen-Mason SJ (2004) Phylogenetic analysis of the plant endo-beta-1,4-glucanase gene family. J Mol Evol 58:506–515. https://doi.org/10.1007/s00239-003-2571-x

  • Martínez-García PJ, Parfitt DE, Bostock RM, Fresnedo-Ramírez J, Vazquez-Lobo A, Ogundiwin EA, Gradziel TM, Crisosto CH (2013) Application of genomic and quantitative genetic tools to identify candidate resistance genes for brown rot resistance in peach. PLoS One 8(11):e78634. https://doi.org/10.1371/journal.pone.0078634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narasimhamoorthy B, Bouton JH, Olsen KM, Sledge MK (2007) Quantitative trait loci and candidate gene mapping of aluminum tolerance in diploid alfalfa. Theor Appl Genet 114:901–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguchi A, Saito A, Homma Y, Nakao M, Sasaki N, Nishino T et al (2007) A UDP-glucose:Isoflavone 7-O-Glucosyltransferase from the roots of soybean (Glycine max) seedlings purification, gene cloning, phylogenetics, and an implication for an alternative strategy of enzyme catalysis. Biol Chem 282(32):23581–23590

    Article  CAS  Google Scholar 

  • Noratto G, Porter W, Byrne D, Cisneros-Zevallos L (2009) Identifying peach and plum polyphenols with chemopreventive potential against estrogen-independent breast cancer cells. J Agric Food Chem 57:5219–5226

    Article  CAS  PubMed  Google Scholar 

  • Nuñez-Lillo G, Balladares C, Pavez C, Urra C, Sanhueza D, Vendramin E, Dettori MT, Arús P, Verde I, Blanco-Herrera F, Campos-Vargas R, Meneses C (2019) High-density genetic map and QTL analysis of soluble solid content, maturity date, and mealiness in peach using genotyping by sequencing. Sci Hortic 257. https://doi.org/10.1016/j.scienta.2019.108734

  • Nurisa A, Kristanti AN, Manuhara YSW (2017) Effect of sucrose, erythrose-4-phosphate and phenylalanine on biomassa and flavonoid content of callus culture from leaves of Gynura procumbens Merr. AIP Conf Proc 1868:090013. https://doi.org/10.1063/1.4995205

    Article  CAS  Google Scholar 

  • Ogundiwin EA, Peace CP, Gradziel TM, Parfitt DE, Bliss FA, Crisosto CH (2009) A fruit quality gene map of Prunus. BMC Genomics 10:587. https://doi.org/10.1186/1471-2164-10-587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohto M-A, Onai K, Furukawa Y, Aoki E, Araki T, Nakamura K (2001) Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiol 127(1):252–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okie WR, Bacon T, Bassi D (2008) Fresh market cultivar development. In: Layne DR, Bassi D (eds) The peach, botany, production and uses. Wallingford, Oxon, pp 139–174

    Chapter  Google Scholar 

  • Pacheco I, Bassi D, Eduardo I, Ciacciulli A, Pirona R, Rossini L, Vecchietti A (2014) QTL mapping for brown rot (Monilinia fructigena) resistance in an intraspecific peach (Prunus persica L. Batsch) F1 progeny. Tree Genet Genomes 10:1223–1242. https://doi.org/10.1007/s11295-014-0756-7

    Article  Google Scholar 

  • Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2:270–278

    Article  Google Scholar 

  • Posmyk MM, Kontek R, Janas KM (2009) Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicol Environ Saf 72(2):596–602

    Article  CAS  PubMed  Google Scholar 

  • Quilot B, Wu BH, Kervella J, Genard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884–897

    Article  CAS  PubMed  Google Scholar 

  • Raingeaud J, Whitmarsh AJ, Barrett T, Derijard B, Davis RJ (1996) MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol 16(3):1247–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravaglia D, Espley RV, Henry-Kirk RA, Andreotti C, Ziosi V, Hellens RP, Costa G, Allan AC (2013) Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biol 13:68. https://doi.org/10.1186/1471-2229-13-68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reig G, Iglesias I, Gatius F, Alegre F (2013) Antioxidant capacity, quality, and anthocyanin and nutrient contents of several peach cultivars [Prunus persica (L.) Batsch] grown in Spain. J. Agric. Food Chem 61: 6344–6357. https://doi.org/10.1021/jf401183d

  • Reig G, Alegre S, Cantin CM, Gatius F, Puy J, Iglesias I (2017) Tree ripening and postharvest firmness loss of eleven commercial nectarine cultivars under Mediterranean conditions. Sci Hortic 219:335–343. https://doi.org/10.1016/j.scienta.2017.03.001

    Article  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  CAS  PubMed  Google Scholar 

  • Salazar JA, Ruiz D, Egea J, Martínez-Gómez P (2013) Transmission of fruit quality traits in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat (SSR) markers. Plant Mol Biol Report 31:1506–1517. https://doi.org/10.1007/s11105-013-0625-9

    Article  CAS  Google Scholar 

  • Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P (2006) Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol 140(2):637–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sterk P, Booij H, Schellekens GA, Van Kammen A, De Vries SC (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell 3:907–921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tavarini S, Degl’Innocenti E, Remorini D, Massai R, Guidi L (2008) Preliminary characterisation of peach cultivars for their antioxidant capacity. Int J Food Sci Technol 43:810–815

    Article  CAS  Google Scholar 

  • Thoma S, Kaneko Y, Somerville C (1993) A non-specific lipid transfer protein from Arabidopsis is a cell wall protein. Plant J 3(3):427–436

    Article  CAS  PubMed  Google Scholar 

  • Trainotti L, Pavanello A, Zanin D (2006) PpEG4 is a peach endo-β-1,4-glucanase gene whose expression in climacteric peaches does not follow a climacteric pattern. J Exp Bot 57(3):589–598

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen JW (2009) MapQTL ® 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma B.V, Wageningen

    Google Scholar 

  • Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, Gasic K, Micheletti D, Rosyara UR, Cattonaro F, Vendramin E, Main D, Aramini V, Blas AL, Mockler TC, Bryant DW, Wilhelm L, Troggio M, Sosinski B, Aranzana MJ, Arús P, Iezzoni A, Morgante M, Peace C (2012) Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PLoS One 7(4):e35668. https://doi.org/10.1371/journal.pone.0035668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verde I, Jenkins J, Dondini L, Micali S, Pagliarani G, Vendramin E et al (2017) The Peach v2.0 release: high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genomics 18(1):225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vizzotto M, Cisneros-Zevallos L, Byrne DH, Ramming DW, Okie WR (2007) Large variation found in the phytochemical and antioxidant activity of peach and plum germplasm. J Am Soc Hortic Sci 132:334–340

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78. https://doi.org/10.1093/jhered/93.1.77

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Xie X, Yao W, Wang J, Ma F, Wang C et al (2017) RING-H2-type E3 gene VpRH2 from Vitis pseudoreticulata improves resistance to powdery mildew by interacting with VpGRP2A. J Exp Bot 68(7):1669–1687

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-G, Yu H-Q, Zhang Y-Y, Lai C-X, She Y-H, Li W-C, Fu FL (2014) Interaction between abscisic acid receptor PYL3 and protein phosphatase type 2C in response to ABA signaling in maize. Gene 549:179–185

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi M, Haji T, Miyake M, Yaegaki H (2002) Studies on the varietal differences and yearly deviation of mesocarp cell numbers and lengths and fruit weight among commercial peach [Prunus persica (L.) Batsch] cultivars and selections, wild types, and their hybrids.  J Jpn Soc Hortic Sci 71:459–466

  • Yang N, Reighard G, Ritchie D, Okie W, Gasic K (2013) Mapping quantitative trait loci associated with resistance to bacterial spot (Xanthomonas arboricola pv. pruni) in peach. Tree Genet Genomes 9:573–586. https://doi.org/10.1007/s11295-012-0580-x

    Article  Google Scholar 

  • Zeballos JL, Abidi W, Giménez R, Monforte AJ, Moreno MA, Gogorcena Y (2016) Mapping QTLs associated with fruit quality traits in peach [Prunus persica (L.) Batsch] using SNP maps. Tree Genet Genomes 12:37. https://doi.org/10.1007/s11295-016-0996-9

    Article  Google Scholar 

  • Zhu W, Gao E, Shaban M, Wang Y, Wang H, Nie X et al (2018) GhUMC1, a blue copper-binding protein, regulates lignin synthesis and cotton immune response. Biochem Biophys Res Commun 504(1):75–81

    Article  CAS  PubMed  Google Scholar 

  • Ziosi V, Noferini M, Fiori G, Tadiello A, Trainotti L, Casadoro G et al (2008) A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit. Postharvest Biol Technol 49:319–329. https://doi.org/10.1016/j.postharvbio.2008.01.017

    Article  CAS  Google Scholar 

  • Zhou H, Lin-Wang K, Wang H, Gu C, Dare AP, Espley RV, He H, Allan AC, Han Y (2015) Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. Plant J 82:105–121. https://doi.org/10.1111/tpj.12792

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the financial contributions towards AA PhD from the CBIE Libyan-North American Scholarship Program.

Funding

This work was supported by the Specialty Crop Block Grant Program at the US Department of Agriculture through grant 12-25-B-1695. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the USDA.

Author information

Authors and Affiliations

Authors

Contributions

AA collected and analyzed the data and wrote the manuscript; CDSL assisted with data analyses and manuscript preparation; KG designed the experiment, provided the resources for data collection, and assisted with data analyses and manuscript preparation; WRO provided the F2 material, and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Ksenija Gasic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 21 kb)

ESM 2

(DOCX 16 kb)

ESM 3

(XLSX 13 kb)

ESM 4

(XLSX 14 kb)

ESM 5

(PDF 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelghafar, A., da Silva Linge, C., Okie, W.R. et al. Mapping QTLs for phytochemical compounds and fruit quality in peach. Mol Breeding 40, 32 (2020). https://doi.org/10.1007/s11032-020-01114-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-020-01114-y

Keywords

Navigation