Skip to main content
Log in

Genome-wide identification and phylogenetic analysis of Family-1 UDP glycosyltransferases in maize (Zea mays)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Family-1 UDP glycosyltransferases (UGTs) from plants transfer sugar moieties from activated sugar donors to a wide range of small molecules, and control many metabolic processes during plant growth and development. Here, we report a genome-wide analysis of maize that identified 147 Family-1 glycosyltransferases based on their conserved PSPG motifs. Phylogenetic analysis of these genes with 18 Arabidopsis UGTs and two rice UGTs clustered them into 17 groups (A–Q). The patterns of intron gain/loss events, as well as their positions within UGTs from the same group, further aided elucidation of their divergence and evolutionary relationships between UGTs. Expression analysis of the maize UGT genes using both online microarray data and quantitative real-time PCR verification indicates that UGT genes are widely expressed in various tissues and likely play important roles in plant growth and development. Our study provides useful information on the Family-1 UGTs in maize, and will facilitate their further characterization to better understand their functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

IAA:

Indole-3-acetic acid

ORF:

Open reading frame

PSPG:

Plant secondary product glycosyltransferase

qRT-PCR:

Quantitative real-time polymerase chain reaction

UDP:

Uridine diphosphate

UGT:

Uridine diphosphate glycosyltransferase

ZOG:

Cis-zeatin O-glucosyltransferase

References

  • Barbazuk WB, Fu Y, McGinnis KM (2008) Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res 18:1381–1392

    Article  CAS  PubMed  Google Scholar 

  • Barvkar VT, Pardeshi VC, Kale SM, Kadoo NY, Gupta VS (2012) Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns. BMC Genom 13:175

    Article  CAS  Google Scholar 

  • Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336

    Article  CAS  PubMed  Google Scholar 

  • Cao PJ, Bartley LE, Jung KH, Ronald PC (2008) Construction of a rice glycosyltransferase phylogenomic database and identification of rice-diverged glycosyltransferases. Mol Plant 1:858–877

    Article  CAS  PubMed  Google Scholar 

  • Caputi L, Malnoy M, Goremykin V, Nikiforova S, Martens S (2011) A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land. Plant J 69:1030–1042

    Article  PubMed  Google Scholar 

  • de la Fuente van Bentem S, Vossen JH, Vermeer JE et al (2003) The subcellular localization of plant protein phosphatase 5 isoforms is determined by alternative splicing. Plant Physiol 133:702–712

    Article  PubMed Central  PubMed  Google Scholar 

  • Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S (2006) Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst 81:77–91

    Article  CAS  PubMed  Google Scholar 

  • Hou B, Lim EK, Higgins GS, Bowles DJ (2004) N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J Biol Chem 279:47822–47832

    Article  CAS  PubMed  Google Scholar 

  • Hughes J, Hughes MA (1994) Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava (Manihot esculenta Crantz) cotyledons. DNA Seq 5:41–49

    CAS  PubMed  Google Scholar 

  • Jin SH, Ma XM, Han P et al (2013) UGT74D1 is a novel auxin glycosyltransferase from Arabidopsis thaliana. PLoS One 8:e61705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones P, Vogt T (2001) Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 213:164–174

    Article  CAS  PubMed  Google Scholar 

  • Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555

    Article  CAS  PubMed  Google Scholar 

  • Langlois-Meurinne M, Gachon CM, Saindrenan P (2005) Pathogen-responsive expression of glycosyltransferase genes UGT73B3 and UGT73B5 is necessary for resistance to Pseudomonas syringae pv tomato in Arabidopsis. Plant Physiol 139:1890–1901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Baldauf S, Lim EK, Bowles DJ (2001) Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J Biol Chem 276:4338–4343

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li X, Guo L et al (2006) A subgroup of MYB transcription factor genes undergoes highly conserved alternative splicing in Arabidopsis and rice. J Exp Bot 57:1263–1273

    Article  CAS  PubMed  Google Scholar 

  • Lim EK, Doucet CJ, Li Y et al (2002) The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J Biol Chem 277:586–592

    Article  CAS  PubMed  Google Scholar 

  • Ludwig-Müller J, Walz A, Slovin JP, Epstein E, Cohen JD, Dong W, Town CD (2005) Overexpression of maize IAGLU in Arabidopsis thaliana alters plant growth and sensitivity to IAA but not IBA and 2,4-D. J Plant Growth Regul 24:127–141

    Article  Google Scholar 

  • Martin RC, Mok MC, Habben JE, Mok DW (2001) A maize cytokinin gene encoding an O-glucosyltransferase specific to cis-zeatin. Proc Natl Acad Sci USA 98:5922–5926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mok MC, Martin RC, Dobrev PI et al (2005) Topolins and hydroxylated thidiazuron derivatives are substrates of cytokinin O-glucosyltransferase with position specificity related to receptor recognition. Plant Physiol 137:1057–1066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ner-Gaon H, Leviatan N, Rubin E, Fluhr R (2007) Comparative cross-species alternative splicing in plants. Plant Physiol 144:1632–1641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poppenberger B, Fujioka S, Soeno K et al (2005) The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proc Natl Acad Sci USA 102:15253–15258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Priest DM, Ambrose SJ, Vaistij FE et al (2006) Use of the glucosyltransferase UGT71B6 to disturb abscisic acid homeostasis in Arabidopsis thaliana. Plant J 46:492–502

    Article  CAS  PubMed  Google Scholar 

  • Reddy AS (2007) Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol 58:267–294

    Article  CAS  PubMed  Google Scholar 

  • Rogozin IB, Lyons-Weiler J, Koonin EV (2000) Intron sliding in conserved gene families. Trends Genet 16:430–432

    Article  CAS  PubMed  Google Scholar 

  • Roy SW, Gilbert W (2005) Rates of intron loss and gain: implications for early eukaryotic evolution. Proc Natl Acad Sci USA 102:5773–5778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Stoltzfus ALJ, Palmer JD, Doolittle WF (1997) Intron “sliding” and the diversity of intron positions. Proc Natl Acad Sci USA 94:10739–10744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun YG, Wang B, Jin SH, Qu XX, Li YJ, Hou BK (2013) Ectopic expression of Arabidopsis glycosyltransferase UGT85A5 enhances salt stress tolerance in tobacco. PLoS One 8:e59924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Szerszen JB, Szczyglowski K, Bandurski RS (1994) iaglu, a gene from Zea mays involved in conjugation of growth hormone indole-3-acetic acid. Science 265:1699–1701

    Article  CAS  PubMed  Google Scholar 

  • Tognetti VB, Van Aken O, Morreel K et al (2010) Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell 22:2660–2679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Veach YK, Martin RC, Mok DW, Malbeck J, Vankova R, Mok MC (2003) O-glucosylation of cis-zeatin in maize. Characterization of genes, enzymes, and endogenous cytokinins. Plant Physiol 131:1374–1380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vogt T, Jones P (2000) Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci 5:380–386

    Article  CAS  PubMed  Google Scholar 

  • von Saint Paul V, Zhang W, Kanawati B et al (2011) The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence. Plant Cell 23:4124–4145

    Article  Google Scholar 

  • Wang BB, Brendel V (2006) Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci USA 103:7175–7180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Ma XM, Kojima M, Sakakibara H, Hou BK (2011) N-glucosyltransferase UGT76C2 is involved in cytokinin homeostasis and cytokinin response in Arabidopsis thaliana. Plant Cell Physiol 52:2200–2213

    Article  CAS  PubMed  Google Scholar 

  • Weis M, Lim EK, Bruce NC, Bowles DJ (2008) Engineering and kinetic characterisation of two glucosyltransferases from Arabidopsis thaliana. Biochimie 90:830–834

    Article  CAS  PubMed  Google Scholar 

  • Yonekura-Sakakibara K, Hanada K (2011) An evolutionary view of functional diversity in family 1 glycosyltransferases. Plant J 66:182–193

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Natural Science Foundation of China (No. 91217301) and from the key lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China (No. 2012-01). The authors thank Dr. Stefan Martens (FEM-IASMA Res and Innovation Centre, San Michele All Adige, Italy) for kindly providing the sequences of rice UGTs from group P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingkai Hou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table S1 Primers used for qRT-PCR

Supplementary material 1 (DOC 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Li, P., Wang, Y. et al. Genome-wide identification and phylogenetic analysis of Family-1 UDP glycosyltransferases in maize (Zea mays). Planta 239, 1265–1279 (2014). https://doi.org/10.1007/s00425-014-2050-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2050-1

Keywords

Navigation