Skip to main content
Log in

The peach genome

  • Review
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The peach [Prunus persica (L.) Batsch] genome sequence has been recently made available to the scientific community. This represents the culmination of a long process that started less than two decades ago with the release of the first marker-based linkage maps. The process has advanced rapidly with the studies of molecular diversity, detection of genome positions of major genes and quantitative trait loci, development of large DNA sequence collections, transcriptome and proteome analyses, comparative genomic studies, construction of a physical map, and development of databases where researchers can access information. The growth of genomics knowledge has been partly due to the simplicity of the peach genome: short (230 Mbp), diploid, and distributed on eight pairs of chromosomes. Its unusually short intergeneration period (2–4 years) and selfing mating behavior, plus a dynamic peach scientific community that has often collaborated in the development of the necessary tools, have also facilitated in constructing a robust sequence of its complete genome. Peach is one of the best known species genetically among tree crops, with the promise of rapid advancement in the next few years. This paper reviews the resources available and the main results obtained, with emphasis placed on application to the development of improved varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott AG, Rajapakse S, Sosinski B, Lu ZX, Sossey-Alaoui K, Gannavarapu M, Reighard G, Ballard RE, BairdWV SR, Callahan A (1998) Construction of saturated linkage maps of peach crosses segregating for characters controlling fruit quality, tree architecture and pest resistance. Acta Hortic 465:41–49

    CAS  Google Scholar 

  • Abbott AG, Arús P, Scorza R (2007) Peach. In: Kole C (ed) Genome mapping and molecular breeding in plants. Springer, Berlin, pp 137–156

    Google Scholar 

  • Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arús P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825

    PubMed  CAS  Google Scholar 

  • Aranzana MJ, Abbassi el-K, Howard W, Arús P (2010) Genetic variation, population structure and linkage disequilibrium in peach commercial varieties. BMC Genet 11:69

    PubMed  Google Scholar 

  • Arumuganathan K, Earle E (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Report 9:208–218

    CAS  Google Scholar 

  • Arús P, Howad W, Mnejja M (2003) Marker development and marker assisted selection in temperate fruit trees. In: Tuberosa R, Phillips RL, Gale M (eds) Proceedings of the international congress: in the wake of the double helix: from the green revolution to the gene revolution. Avenue Media, Bologna, pp 309–325

    Google Scholar 

  • Arús P, Yamamoto T, Dirlewanger E, Abbott AG (2005) Synteny in the Rosaceae. In: Janick J (ed) Plant breed reviews, vol 27. Wiley, Hoboken, pp 175–211

    Google Scholar 

  • Bailey JS, French AP (1933) The inheritance of certain characteristics in the peach. Proc Am Soc Hortic Sci 29:127–130

    Google Scholar 

  • Bailey JS, French AP (1949) The inheritance of certain fruit and foliage characteristics in the peach. Mass Agr Exp St RE B 452

  • Baird WV, Estager AS, Wells J (1994) Estimating nuclear DNA content in peach and related diploid species using laser flow cytometry and DNA hybridization. J Am Soc Hort Sci 119:1312–1316

    Google Scholar 

  • Bassil N, Gilmore B, Verde I, Sosinski B, Arús P, Fazio G, Gasic K, Clark J, Byrne D, Gradziel T, Main D, Morgante M, Whilhelm L, Mockler T, Peace C, Iezzoni A (2010) A coordinated effort to peach SNP discovery in RosBreed. Book of Abstracts, vol 2. IHC, Lisbon, p 240

    Google Scholar 

  • Bielenberg DG, Wang Y, Li Z, Zhebentyayeva T, Fan S, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genome 4:495–507

    Google Scholar 

  • Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM, Kocsisne GM, Mydin KK (2002) An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45:520–529

    PubMed  CAS  Google Scholar 

  • Borsani J, Budde CO, Porrini L, Lauxmann MA, Lombardo VA, Murray R, Andreo CS, Drincovich MF, Lara MV (2009) Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. J Exp Bot 60:1823–1837

    PubMed  CAS  Google Scholar 

  • Boudehri K, Bendahmane A, Cardinet G, Troadec C, Moing A, Dirlewanger E (2009) Phenotypic and fine genetic characterization of the D locus controlling fruit acidity in peach. BMC Plant Biol 9:59

    PubMed  Google Scholar 

  • Byrne DH (1990) Isozyme variability in four diploid stone fruits compared with other woody perennial plants. J Hered 81:68–71

    Google Scholar 

  • Cabrera A, Kozik A, Howad W, Arús P, Iezzoni AF, van der Knaap E (2009) Development and bin mapping of a Rosaceae Conserved Ortholog Set (COS) of markers. BMC Genom 10:562

    Google Scholar 

  • Cantín CM, Crisosto CH, Ogundiwin EA, Gradziel T, Torrents J, Moreno MA, Gogorcena Y (2010) Chilling injury susceptibility in an intra-specific peach [Prunus persica (L.) Batsch] progeny. Postharvest Biol Technol 58:79–87

    Google Scholar 

  • Chan Z, Qin G, Xu X, Li B, Tian S (2007) Proteome approach to characterize proteins induced by antagonist yeast and salicylic acid in peach fruit. J Proteome Res 6:1677–1688

    PubMed  CAS  Google Scholar 

  • Chaparro JX, Werner DJ, O'Malley D, Sederoff RR (1994) Targeted mapping and linkage analysis of morphological isozyme, and RAPD markers in peach. Theor Appl Genet 87:805–815

    CAS  Google Scholar 

  • Chen L, Zhang SM, Illa E, Song LJ, Wu SD, Howad W, Arús P, van de Weg E, Chen KS, Gao ZS (2008) Genomic characterization of putative allergen genes in peach/almond and their synteny with apple. BMC Genom 9:543

    Google Scholar 

  • Clarke JB, Sargent DJ, Boskovic RI, Belaj A, Tobutt KR (2009) A cherry map from the inter-specific cross Prunus avium ‘Napoleon’ x P. nipponica based on microsatellite, gene-specific and isoenzyme markers. Tree Genet Genome 5:41–51

    Google Scholar 

  • Claverie M, Bosselut N, Lecouls AC, Voisin R, Lafargue B, Poizat C, Kleinhentz M, Laigret F, Dirlewanger E, Esmenjaud D (2004) Location of independent root-knot nematode resistance genes in plum and peach. Theor Appl Genet 108:765–773

    PubMed  CAS  Google Scholar 

  • Dardick CD, Callahan AM, Chiozzotto R, Schaffer RJ, Piagnani MC, Scorza R (2010) Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biol 8:13

    PubMed  Google Scholar 

  • Decroocq V, Foulongne M, Lambert P, Le Gall P, Mantin C, Pascal T, Schurdi-Levraud V, Kervella J (2005) Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol Genet Genom 272:680–9

    CAS  Google Scholar 

  • Deleu W, González V, Monfort A, Bendahmane A, Puigdomenech P, Arús P, Garcia-Mas J (2007) Structure of two melon regions reveals high microsynteny with sequenced plant species. Mol Genet Genom 278:611–622

    CAS  Google Scholar 

  • Dettori MT, Quarta R, Verde I (2001) A peach linkage map integrating RFLPs, SSRs, RAPDs, and morphological markers. Genome 44:783–790

    PubMed  CAS  Google Scholar 

  • Dirlewanger E, Pronier V, Parvery C, Rothan C, Guye A, Monet R (1998) Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers. Theor Appl Genet 97:888–895

    CAS  Google Scholar 

  • Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTL controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98:18–31

    CAS  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896

    PubMed  CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Boudehri K, Renaud C, Capdeville G, Tauzin Y, Laigret F, Moing A (2006) Development of a second generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genet Genome 3:1–13

    Google Scholar 

  • Dominguez I, Graziano E, Gebhardt C, Barakat A, Berry S, Arús P, Delseny M, Barnes S (2003) Plant genome archeology: evidence for conserved ancestral chromosome segments in dicotyledonous plant species. Plant Biotechnol J 1:91–99

    PubMed  CAS  Google Scholar 

  • Etienne C, Rothan C, Moing A, Plomion C, Bodenes C, Dumas LS, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTL for sugar and organic acid content in peach (Prunus persica (L.) Batsch). Theor Appl Genet 105:145–159

    PubMed  CAS  Google Scholar 

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930

    PubMed  Google Scholar 

  • Foulongne M, Pascal T, Pfeiffer F, Kervella J (2003) QTL for powdery mildew resistance in peach × Prunus davidiana crosses: consistency across generations and environments. Mol Breed 12:33–50

    CAS  Google Scholar 

  • Georgi LL, Wang Y, Yverggniaux D, Ormsbee T, Inigo M, Reighard GL, Abbott AG (2002) Construction of a BAC library and its application to the identification of simple sequence repeats in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:1151–1158

    PubMed  CAS  Google Scholar 

  • González-Agüero M, Pavez L, Ibáñez F, Pacheco I, Campos-Vargas R, Meisel LA, Orellana A, Retamales J, Silva H, González M, Cambiazo V (2008) Identification of woolliness response genes in peach fruit after post-harvest treatments. J Exp Bot 59:1973–1986

    PubMed  Google Scholar 

  • Green ED (2001) Strategies for the systematic sequencing of complex genomes. Nat Rev Genet 2:573–583

    PubMed  CAS  Google Scholar 

  • Horn R, Lecouls AC, Callahan A, Dandekar A, Garay L, McCord P, Howad W, Chan H, Verde I, Ramaswamy K et al (2005) Candidate gene database and transcript map for peach, a model species for fruit trees. Theor Appl Genet 110:1419–1428

    PubMed  Google Scholar 

  • Hoskins RA, Nelson CR, Berman BP, Laverty TR, George RA, Ciesiolka L, Naeemuddin M, Arenson AD, Durbin J, David RG et al (2000) BAC-based physical map of the major autosomes of Drosophila melanogaster. Science 287:2271–2274

    PubMed  CAS  Google Scholar 

  • Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arús P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309

    PubMed  CAS  Google Scholar 

  • Iezzoni A, Weebadde C, Luby J, Yue CY, van de Weg E, Fazio G, Main D, Peace CP, Bassil NV, McFerson J (2010) RosBREED: enabling marker-assisted breeding in Rosaceae. Acta Hortic 859:389–394

    Google Scholar 

  • Illa E, Lambert P, Quilot B, Audergon JM, Dirlewanger E, Howad W, Dondini L, Tartarini S, Lain O, Testolin R, Bassi D, Arús P (2009) Linkage map saturation, construction, and comparison in four Prunus populations. J Hortic Sci Biotech, ISAFRUIT special issue 168-175

  • Illa E, Eduardo I, Audergon JM, Barale F, Dirlewanger E, Gao ZS, Moing A, Lambert P, Le Dantec L, Li XW, Poëssel JL, Pozzi C, Rossini L, Vecchietti A, Arús P, Howad W (2011a) Saturating the Prunus (stone fruits) genome with candidate genes for fruit quality. Mol Breed 28:667–682

    Google Scholar 

  • Illa E, Sargent DJ, Lopez Girona E, Bushakra J, Cestaro A, Crowhurst R, Pindo M, Cabrera A, Van der Knapp E, Iezzoni A, Gardiner S, Velasco R, Arús P, Chagné D, Troggio M (2011b) Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family. BMC Evol Biol 11:9

    PubMed  Google Scholar 

  • Jáuregui B (1998) Identification of molecular markers linked to agronomic characters in an interspecific almond × peach progeny. University of Barcelona, Spain

    Google Scholar 

  • Jáuregui B, de Vicente MC, Messeguer R, Felipe A, Bonnet A, Salesses G, Arús P (2001) A reciprocal translocation between ‘Garfi’ almond and ‘Nemared’ peach. Theor Appl Genet 102:1169–1176

    Google Scholar 

  • Jelenkovic G, Harrington E (1972) Morphology of the pachytene chromosomes in Prunus persica. Can J Genet Cytol 14:317–324

    Google Scholar 

  • Joobeur T (1998) Construction of a molecular marker map and genetic analysis of agronomic characters in Prunus. Dissertation, University of Lleida, Spain

  • Joobeur T, Viruel MA, de Vicente MC, Jáuregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arús P (1998) Construction of a saturated linkage map for Prunus using an almond × peach F2 progeny. Theor Appl Genet 97:1034–1041

    CAS  Google Scholar 

  • Jung S, Jesudurai C, Staton M, Du Z, Ficklin S, Cho I, Abbott A, Tomkins J, Main D (2004) GDR (Genome Database for Rosaceae): integrated web resources for Rosaceae genomics and genetics research. BMC Bioinforma 5:130

    Google Scholar 

  • Jung S, Abbott A, Jesudurai C, Tomkins J, Main D (2005) Frequency, type, distribution and annotation of simple sequence repeats in Rosaceae ESTs. Funct Integr Genom 5:136–43

    CAS  Google Scholar 

  • Jung S, Main D, Staton M, Cho I, Zhebentyayeva T, Arús P, Abbott A (2006) Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes. BMC Genom 7:81

    Google Scholar 

  • Jung S, Staton M, Lee T, Blenda A, Svancara R, Abbott A, Main D (2008) GDR (Genome Database for Rosaceae): integrated Web-database for Rosaceae genomics and genetics data. Nucleic Acids Res 36(Database Issue):D1034–D1040

    PubMed  CAS  Google Scholar 

  • Jung S, Jiwan D, Cho I, Lee T, Abbott A, Sosinski B, Main D (2009) Synteny of Prunus and other model plant species. BMC Genom 10:76

    Google Scholar 

  • Lalli DA, Decroocq V, Blenda AV, Schurdi-Levraud V, Garay L, Le Gall O, Damsteegt VD, Reighard GL, Abbott AG (2005) Identification and mapping of resistance gene analogs (RGAS) in Prunus: a resistance map for Prunus. Theor Appl Genet 111:1504–1513

    PubMed  CAS  Google Scholar 

  • Lara MV, Borsani J, Budde CO, Lauxmann MA, Lombardo VA, Murray R, Andreo CS, Drincovich MF (2009) Biochemical and proteomic analysis of ‘Dixiland’ peach fruit (Prunus persica) upon heat treatment. J Exp Bot 60:4315–4333

    PubMed  CAS  Google Scholar 

  • Laurens F, Aranzana MJ, Arús P, Bonany J, Corelli L, Patocchi A, Peil A, Quilot B, Salvi S, van de Weg E, Vecchietti A (2010) FruitBreedomics: a new European initiative to bridge the gap between scientific research and breeding Rosaceae fruit tree crops. Book of abstracts v 2. IHC Lisbon, p 242

  • Lazzari B, Caprera A, Vecchietti A, Stella A, Milanesi L, Pozzi C (2005) ESTree db: a tool for peach functional genomics. BMC Bioinforma 6(Suppl 4):S16, PMID: 16351742

    Google Scholar 

  • Lazzari B, Caprera A, Vecchietti A, Merelli I, Barale F, Milanesi L, Stella A, Pozzi C (2008) Version VI of the ESTree db: an improved tool for peach transcriptome analysis. BMC Bioinforma 9(Suppl 2):S9, PMID: 18387211

    Google Scholar 

  • Lu ZX, Reighard GL, Nyczepir AP, Beckman TG, Ramming DW (1998) Inheritance of resistance to root-knot nematodes in peach rootstocks. Acta Hortic 465:111–116

    Google Scholar 

  • Luo MC, Thomas C, You FM, Hsiao J, Ouyang S, Buell CR, Malandro M, McGuire PE, Anderson OD, Dvorak J (2003) High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics 82:378–389

    PubMed  CAS  Google Scholar 

  • Marandel G, Pascal T, Candresse T, Decroocq V (2009) Quantitative resistance to Plum pox virus in Prunus davidiana P1908 linked to components of the eukaryotic translation initiation complex. Plant Pathol 58:425–435

    CAS  Google Scholar 

  • Marra M, Kucaba T, Sekhon M, Hillier L, Martienssen R, Chinwalla A, Crokett J, Fedele J, Grover H, Gund C, McCombie WR, McDonald K, McPherson J, Mudd N, Parnell L, Schein J, Seim R, Shelby P, Waterston R, Wilson R (1999) A map for sequence analysis of the Arabidopsis thaliana genome. Nat Genet 22:269–270

    Google Scholar 

  • Meyer M, Stenzel U, Hofreiter M (2008) Parallel tagged sequencing on the 454 platform. Nat Protoc 3:267–278

    PubMed  CAS  Google Scholar 

  • Mnejja M, Garcia-Mas J, Audergon JM, Arús P (2010) Prunus microsatellite marker transferability across rosaceous crops. Tree Genet Genome 6:689–700

    Google Scholar 

  • Monet R (1989) Peach genetics: past, present and future. Acta Hortic 254:49–53

    Google Scholar 

  • Monet R, Guye A, Roy M, Dachary N (1996) Peach Mendelian genetics: a short review and new results. Agronomie 16:321–329

    Google Scholar 

  • Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci USA 104:19363–8

    PubMed  Google Scholar 

  • Nelson W, Soderlund C (2009) Integrating sequence with FPC fingerprint maps. Nucleic Acids Res 37:e36

    PubMed  Google Scholar 

  • Nelson WM, Dvorak J, Luo MC, Messing J, Wing RA, Soderlund C (2007) Efficacy of clone fingerprinting methodologies. Genomics 89:160–165

    PubMed  CAS  Google Scholar 

  • Nilo R, Saffie C, Lilley K, Baeza-Yates R, Cambiazo V, Campos-Vargas R, González M, Meisel LA, Retamales J, Silva H, Orellana A (2010) Proteomic analysis of peach fruit mesocarp softening and chilling injury using difference gel electrophoresis (DIGE). BMC Genomic 11:43

    Google Scholar 

  • Ogundiwin EA, Peace CP, Gradziel TM, Dandekar AM, Bliss FA, Crisosto CH (2007) Molecular genetic dissection of chilling injury in peach fruit. Acta Hortic 738:633–638

    Google Scholar 

  • Ogundiwin EA, Martí C, Forment J, Pons C, Granel A, Gradziel TM, Peace CP, Crisosoto CH (2008) Development of ChillPeach genomic tools and identification of cold-response genes in peach fruit. Plant Mol Biol 68:379–397

    PubMed  CAS  Google Scholar 

  • Ogundiwin EA, Peace CP, Gradziel TM, Parfitt DE, Bliss FA, Crisosto CH (2009) A fruit quality gene map of Prunus. BMC Genom 10:587

    Google Scholar 

  • Olukolu BA, Trainin T, Fan SH, Kole C, Bielenberg DG, Reighard GL, Abbott AG, Holland D (2009) Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.). Genome 52:819–828

    PubMed  CAS  Google Scholar 

  • Pascal T, Pfeiffer F, Kervella J (2010) Powdery mildew resistance in the peach cultivar Pamirskij 5 is genetically linked with the Gr gene for leaf color. Hortscience 45:150–152

    Google Scholar 

  • Peace CP, Norelli JL (2009) Genomics approaches to crop improvement in the Rosaceae. In: Folta KM, Gardiner SE (eds) Genetics and genomics of Rosaceae. Springer, New York, pp 19–53

    Google Scholar 

  • Peace CP, Crisosto CH, Gradziel TM (2005) Endopolygalacturonase: a candidate gene for Freestone and Melting flesh in peach. Mol Breed 16:21–31

    CAS  Google Scholar 

  • Peace CP, Crisosto CH, Garner D, Dandekar AM, Gradziel TM, Bliss FA (2006) Genetic control of internal breakdown in peach. Acta Hortic 713:489–496

    CAS  Google Scholar 

  • Peace CP, Callahan A, Ogundiwin EA, Potter D, Gradziel TM, Bliss FA, Crisosto CH (2007) Endopolygalacturonase genotypic variation in Prunus. Acta Hortic 738:639–646

    Google Scholar 

  • Peña-Cortés H, Barrios P, Dorta F, Polanco V, Sánchez C, Sánchez E, Ramírez I (2005) Involvement of jasmonic acid and derivatives in plant responses to pathogens and insects and in fruit ripening. J Plant Growth Regul 23:246–260

    Google Scholar 

  • Pozzi C, Vecchietti A (2009) Peach structural genomics. In: Folta KM, Gardiner SE (eds) Genetics and genomics of Rosaceae. Springer, New York, pp 235–257

    Google Scholar 

  • Quilot B, Wu BH, Kervella J, Génard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884–897

    PubMed  CAS  Google Scholar 

  • Rajapakse S, Bethoff LE, He G, Estager AE, Scorza R, Verde I, Ballard RE, Baird WV, Callahan A, Monet R, Abbott AG (1995) Genetic linkage mapping in peach using morphological, RFLP and RAPD markers. Theor Appl Genet 90:503–510

    CAS  Google Scholar 

  • Renaut J, Hausman J, Bassett C, Artlip T, Cauchie H, Witters E, Wisniewski M (2008) Quantitative proteomic analysis of short photoperiod and low-temperature responses in bark tissues of peach (Prunus persica L. Batsch). Tree Genet Genome 4:589–600

    Google Scholar 

  • Rounsley S, Marri PR, Yu Y, He R, Sisneros N, Goicoechea JL, Lee SJ, Angelova A, Kudrna D, Luo M, Affourtit J, Desany B, Knight J, Niazi F, Egholm M, Wing RA (2009) De novo next generation sequencing of plant genomes. Rice 2:35–43

    Google Scholar 

  • Rubio M, Pascal T, Bachellez A, Lambert P (2010) Quantitative trait loci analysis of plum pox virus resistance in Prunus davidiana P1908: new insights on the organization of genomic resistance regions. Tree Genet Genome 6:291–304

    Google Scholar 

  • Ruiz EMV, Soriano JM, Romero C, Zhebentyayeva T, Terol J, Zuriaga E, Llácer G, Abbott AG, Badenes ML (2011) Narrowing down the apricot Plum pox virus resistance locus and comparative analysis with the peach genome syntenic region. Mol Plant Pathol 12:535–547

    Google Scholar 

  • Sánchez-Pérez R, Howad W, Garcia-Mas J, Arús P, Martínez-Gómez P, Dicenta F (2010) Molecular markers for kernel bitterness in almond. Tree Genet Genome 6:237–245

    Google Scholar 

  • Scorza R, Melnicenco L, Dang P, Abbott AG (2002) Testing a microsatellite marker for selection of columnar growth habit in peach (Prunus persica (L.) Batsch). Acta Hortic 592:285–289

    CAS  Google Scholar 

  • She X, Jiang Z, Clark RA, Liu G, Cheng Z, Tuzun E, Church DM, Sutton G, Halpern AL, Eichler EE (2004) Shotgun sequence assembly and recent segmental duplications within the human genome. Nature 431:927–930

    PubMed  CAS  Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116

    Google Scholar 

  • Soriano JM, Vera-Ruiz EM, Vilanova S, Martínez-Calvo J, Llácer G, Badenes ML, Romero C (2008) Identification and mapping of a locus conferring plum pox virus resistance in two apricot-improved linkage maps. Tree Genet Genome 4:391–402

    Google Scholar 

  • Steuernagel B, Taudien S, Gundlach H, Seidel M, Ariyadasa R, Schulte D, Petzold A, Felder M, Graner A, Scholz U, Mayer KF, Platzer M, Stein N (2009) De novo 454 sequencing of bar coded BAC pools for comprehensive gene survey and genome analysis in the complex genome of barley. BMC Genom 10:547

    Google Scholar 

  • Sulston J, Mallett F, Durbin R, Horshnell T (1989) Image analysis of restriction enzyme fingerprint autoradiograms. Comput Appl Biosci 13:101–106

    Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    PubMed  CAS  Google Scholar 

  • Toyama TK (1974) Haploidy in peach. Hortscience 9:187–188

    Google Scholar 

  • Trainotti L, Bonghi C, Ziliotto F, Zanin D, Rasori A, Casadoro G, Ramina A, Tonutti P (2006) The use of microarray μPEACH1.0 to investigate transcriptome changes during transition from pre-climacteric to climacteric phase in peach fruit. Plant Sci 170:606–613

    CAS  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    PubMed  CAS  Google Scholar 

  • Vendramin E (2006) Application of advanced molecular techniques in peach [Prunus persica (L.) Batsch] breeding to improve fruit quality traits. Dissertation, University of Tuscia, Italy

  • Verde I, Quarta R, Cerdrola C, Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hortic 592:291–297

    CAS  Google Scholar 

  • Verde I, Lauria M, Dettori MT, Vendramin E, Balconi C, Micali S, Wang Y, Marrazzo MT, Cipriani G, Hartings H, Testolin R, Abbott AG, Motto M, Quarta R (2005) Microsatellite and AFLP markers in the [Prunus persica (L.) Batsch] × P. ferganensis BC1 linkage map: saturation and coverage improvement. Theor Appl Genet 111:1013–1021

    PubMed  CAS  Google Scholar 

  • Verde I, Cattonaro F, Scalabrin S, Vendramin E, Policriti A, Del Fabbro C, Quarta R, Dettori MT, Sosinski B, Morgante M (2010) SNP discovery in peach germplasm using a next generation sequencing platform. In: Plant & Animal Genomes XVIII Conference January 9–13, 2010 abstract P185

  • Vilanova S, Sargent DJ, Arús P, Monfort A (2008) Synteny conservation between two distantly-related Rosaceae genomes: Prunus (the stone fruits) and Fragaria (the strawberry). BMC Plant Biol 8:67

    PubMed  Google Scholar 

  • Viruel MA, Madur D, Dirlewanger E, Pascal T, Kervella J (1998) Mapping quantitative trait loci controlling peach leaf curl resistance. Acta Hortic 465:79–87

    CAS  Google Scholar 

  • Vizoso P, Meisel LA, Tittarelli A, Latorre M, Saba J, Caroca R, Maldonado J, Cambiazo V, Campos-Vargas R, González M, Orellana A, Silva H (2009) Comparative EST transcript profiling of peach fruits under different post-harvest conditions reveals candidate genes associated with peach fruit quality. BMC Genom 10:423

    Google Scholar 

  • Wang Y, Georgi LL, Reighard GL, Scorza R, Abbott AG (2002) Genetic mapping of the evergrowing gene in peach (Prunus persica (L.) Batsch). J Hered 93:352–358

    PubMed  CAS  Google Scholar 

  • Warburton ML, Becerra-Velasquez VL, Goffreda JC, Bliss FA (1996) Utility of RAPD markers in identifying genetic linkages to genes of economic interest in peach. Theor Appl Genet 93:920–925

    CAS  Google Scholar 

  • Warren RL, Varabei D, Platt D, Huang X, Messina D, Yang SP, Kronstad JW, Krzywinski M, Warren WC, Wallis JW, Hillier LW, Chinwalla AT, Schein JE, Siddiqui AS, Marra MA, Wilson RK, Jones SJM (2006) Physical map-assisted whole-genome shotgun sequence assemblies. Genome Res 16:768–775

    PubMed  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates, an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Shimada T, Imai T, Yaegaki H, Haji T, Matsuta N, Yamaguchi M, Hayashi T (2001) Characterization of morphological traits based on a genetic linkage map in peach. Breed Sci 51:271–278

    CAS  Google Scholar 

  • Yamamoto Y, Yamaguchi M, Hayashi T (2005) An integrated genetic linkage map of peach by SSR, STS, AFLP and RAPD. J Jpn Soc Hortic Sci 74:204–213

    CAS  Google Scholar 

  • Zhang HB, Wing RA (1997) Physical mapping of the rice genome with BACs. Plant Mol Biol 35:115–127

    PubMed  CAS  Google Scholar 

  • Zhang HB, Wu C (2001) BAC as tools for genome sequencing. Plant Physiol Biochem 39:195–209

    CAS  Google Scholar 

  • Zhebentyayeva TN, Horn R, Mook J, Lecouls A, Georgi L, Abbott AG, Reighard GL, Swire-Clark G, Baird WV (2006) A physical framework for the peach genome. Acta Hortic 713:83–88

    CAS  Google Scholar 

  • Zhebentyayeva TN, Jiwan D, Jun JH, Lalli DA, Forrest S, Duncan JA, Reighard GL, Main D, Callahan A, Scorza R, Abbott AG (2007) Exploitation of the structural and functional genomics databases for gene identification in peach. Acta Hortic 738:711–717

    CAS  Google Scholar 

  • Zhebentyayeva TN, Swire-Clark G, Georgi LL, Garay L, Jung S, Forrest S, Blenda AV, Blackmon B, Mook J, Horn R, Howad W, Arús P, Main D, Tomkins JP, Sosinski B, Baird WV, Reighard GL, Abbott AG (2008) A framework physical map for peach, a model Rosaceae species. Tree Genet Genome 4:745–756

    Google Scholar 

  • Ziliotto F, Begheldo M, Rasori A, Bonghi C, Tonutti P (2008) Transcriptome profiling of ripening nectarine (Prunus persica L. Batsch) fruit treated with 1-MCP. J Exp Bot 59:2781–2791

    PubMed  CAS  Google Scholar 

  • Ziosi V, Bonghi C, Bregoli AM, Trainotti L, Biondi S, Sutthiwal S, Kondo S, Costa G, Torrigiani P (2008) Jasmonate-induced transcriptional changes suggest a negative interference with the ripening syndrome in peach fruit. J Exp Bot 59:563–573

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The group of IRTA is a member of the CONSOLIDER Center for Basic Genomics and Agro-food Orientation (CSD2007-00036) and received additional funding for peach genomics research from a project of the Spanish Ministry of Education (AGL2009-07305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pere Arús.

Additional information

Communicated by T. Drudge

A contribution to the special issue “The genomes of the giants: a walk through the forest of tree genomes.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arús, P., Verde, I., Sosinski, B. et al. The peach genome. Tree Genetics & Genomes 8, 531–547 (2012). https://doi.org/10.1007/s11295-012-0493-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-012-0493-8

Keywords

Navigation