Skip to main content
Log in

Genome-wide association studies provide insights on genetic architecture of resistance to leaf rust in a worldwide barley collection

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

We assembled an international barley panel comprising 282 entries from 26 countries with various levels of field resistance to leaf rust caused by Puccinia hordei. The panel was screened for leaf rust response with an array of pathotypes at the seedling stage, and at the adult plant stage in multiple environments (2013–2015) in Australia and Uruguay, and genotyped using > 13 K polymorphic DArT-Seq markers. Multipathotype testing in the greenhouse postulated the presence of seedling resistance genes Rph1, Rph2, Rph3, Rph4, Rph7, Rph9.am, Rph12, Rph14, Rph15, Rph19, and Rph25. Genome-wide association studies (GWAS) based on field data identified 13 QTLs significantly associated with DArT-Seq markers on chromosomes 2H (Rph_G_Q1, Rph_G_Q2, Rph_G_Q3, and Rph_G_Q4), 4H (Rph_G_Q5), 5H (Rph_G_Q6, Rph_G_Q7, Rph_G_Q8), 6H (Rph_G_Q9 and Rph_G_Q10), and 7H (Rph_G_Q11, Rph_G_Q12, and Rph_G_Q13). Three QTLs (Rph_G_Q3, Rph_G_Q5, and Rph_G_Q6) were detected under all environments, whereas the other ten were variable, being detected in 1–4 environments; Rph_G_Q1 and Rph_G_Q13 being detected only in Uruguay. Among the three QTLs detected under all environments, Rph_G_Q6 on chromosome 5H had the largest effect and corresponded to a region where the cataloged APR gene Rph20 is located. Rph_G_Q3 and Rph_G_Q5 detected on chromosome 2H and 4H aligned with QTLs reported in at least three previous studies. The studies provide useful information towards better understanding of the genetic architecture of seedling and adult plant resistance to leaf rust in diverse global barley germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bedo J, Wenzl P, Kowalczyk A, Kilian A (2008) Precision-mapping and statistical validation of quantitative trait loci by machine learning. BMC Genet 9:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Borovkova IG, Jin Y, Steffenson BJ (1998) Chromosomal location and genetic relationship of leaf rust resistance genes Rph9 and Rph12 in barley. Phytopathology 88:76–80

    Article  CAS  PubMed  Google Scholar 

  • Castro AJ, Gamba F, German S, Gonzalez S, Hayes PM, Pereyra S, Perez C (2012) Quantitative trait locus analysis of spot blotch and leaf rust resistance in the BCD47 Baronesse barley mapping population. Plant Breed 131:258–266

    Article  CAS  Google Scholar 

  • Clifford BC (1985) Barley leaf rust. In: Roelfs AP, Bushnell WR (eds) The cereal rusts volume II: diseases, distribution and control. Academic Press, New York

    Google Scholar 

  • Consortium IBGS (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Google Scholar 

  • Cotterill PJ, Rees RG, Platz GJ, Dillmacky R (1992) Effects of leaf rust on selected Australian barleys. Aust J Exp Agric 32:747–751

    Article  Google Scholar 

  • Cromey MG, Viljanen-Rollinson SLH (1995) Virulence of Puccinia hordei on barley in New Zealand from 1990 to 1993. N Z J Crop Hortic Sci 23:115–119

    Article  Google Scholar 

  • Derevnina L, Singh D, Park RF (2013) Identification and characterization of seedling and adult plant resistance to Puccinia hordei in Chinese barley germplasm. Plant Breed 132:571–579

    Article  CAS  Google Scholar 

  • Derevnina L, Singh D, Park RF (2015) The genetic relationship between barley leaf rust resistance genes located on chromosome 2HS. Euphytica 203:211–220

    Article  CAS  Google Scholar 

  • Dracatos PM, Khatkar MS, Singh D, Park RF (2014) Genetic mapping of a new race specific resistance allele effective to Puccinia hordei at the Rph9/Rph12 locus on chromosome 5HL in barley. BMC Plant Biol 14:382

    Article  Google Scholar 

  • Dracatos PM, Singh D, Bansal U, Park RF (2015) Identification of new sources of adult plant resistance to Puccinia hordei in international barley (Hordeum vulgare L.) germplasm. Eur J Plant Pathol 141:463–476

    Article  CAS  Google Scholar 

  • Elmansour H, Singh D, Dracatos PM, Park RF (2017) Identification and characterization of seedling and adult plant resistance to Puccinia hordei in selected African barley germplasm. Euphytica 213:119. https://doi.org/10.1007/s10681-017-1902-8

    Article  Google Scholar 

  • Esvelt Klos K, Gordon T, Bregitzer P, Hayes P, Chen XM, del Blanco IA, Fisk S, Bonman JM (2016) Barley stripe rust resistance QTL: development and validation of SNP markers for resistance to Puccinia striiformis f. Sp. hordei. Phytopathology 106:1344–1351

    Article  CAS  PubMed  Google Scholar 

  • Fetch TG, Steffenson BJ, Jin Y (1998) Worldwide virulence of Puccinia hordei on barley. Phytopathology 88:S28

    Article  Google Scholar 

  • Fulton TM, Chunzoongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209

    Article  CAS  Google Scholar 

  • Gilmour J (1973) Octal notation for designing physiologic races of plant pathogens. Nature 242:620

    Article  Google Scholar 

  • Golan T, Anikster Y, Moseman JG, Wahl I (1978) A new virulent strain of Puccinia hordei. Euphytica 27:185–189

    Article  Google Scholar 

  • Golegaonkar PG, Karaoglu H, Park RF (2009a) Molecular mapping of leaf rust resistance gene Rph14 in Hordeum vulgare. Theor Appl Genet 119:1281–1288

    Article  CAS  PubMed  Google Scholar 

  • Golegaonkar PG, Singh D, Park RF (2009b) Evaluation of seedling and adult plant resistance to Puccinia hordei in barley. Euphytica 166:183–197

    Article  CAS  Google Scholar 

  • Gonzalez AM, Marcel TC, Niks RE (2012) Evidence for a minor gene-for-minor gene interaction explaining nonhypersensitive polygenic partial disease resistance. Phytopathology 102:1086–1093

    Article  PubMed  Google Scholar 

  • Gutierrez L, Silvia G, Pereyra S, Hayes PM, Pérez CA, Capettini F, Locatelli A, Berberian NM, Falconi EE, Estrada R, Fros D, Gonza V, Altamirano H, Huerta-Espino J, Neyra E, Orjeda G, Sandoval-Islas S, Singh R, Turkington K, Castro AJ (2015) Multi-environment multi-QTL association mapping identifies disease resistance QTL in barley germplasm from Latin America. Theor Appl Genet 128:501–516

    Article  CAS  PubMed  Google Scholar 

  • Hickey LT, Lawson W, Platz GJ, Dieters M, Arief VN, German S, Fletcher S, Park RF, Singh D, Pereyra S, Franckowiak J (2011) Mapping Rph20: a gene conferring adult plant resistance to Puccinia hordei in barley. Theor Appl Genet 123:55–68

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Statler JD, Franckowiak JD, Steffenson BJ (1993) Linkage between leaf rust resistance genes and morphological markers in barley. Phytopathology 83:230–233

    Article  Google Scholar 

  • Kilian A, Wenzl P, Huttner E, Carling J, Xia L, Blois H, Caig V, Heller-Uszynska K, Jaccoud D, Hopper C, Aschenbrenner-Kilian M, Evers M, Peng K, Cayla C, Hok P, Uszynski G (2012) Diversity arrays technology: a generic genome profiling technology on open platforms. In: Pompanon F, Bonin A (eds) Data production and analysis in population genomics: methods and protocols. Humana Press, Totowa, pp 67–89

    Chapter  Google Scholar 

  • Kicherer S, Backes G, Walther U, Jahoor A (2000) Localising QTLs for leaf rust resistance and agronomic traitsin barley (Hordeum vulgare L.) Theor Appl Genet 100:881–888

    Article  CAS  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laido, G, Panio G, Marone D, Russo MA, Ficco Donatella BM, Giovanniello, Cattivelli, Steffenson B, de Vita P, Mastrangelo AM (2015) Identification of new resistance loci to African stem rust race TTKSK in tetraploid wheats based on linkage and genome-wide association mapping Fronts Pl Sci 1033

  • Liu F, Gupta S, Zhang X-Q, Jones M, Loughman R, Lance R, Li C (2011) PCR markers for selection of adult plant leaf rust resistance in barley (Hordeum vulgare L.) Mol Breed 28:657–666

    Article  CAS  Google Scholar 

  • Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJD, Graner A, Niks RE (2007) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theor Appl Genet 114:487–500

    Article  CAS  PubMed  Google Scholar 

  • McNeal FH, Konzak CF, Smith EP, Tate WS, Russel TS (1971) A uniform system for recording and processing cereal research data. Agricultural Research Service bulletin 34–121. United States Department of Agriculture, Washington

    Google Scholar 

  • Milne I, Shaw P, Stephen G, Bayer M, Cardle L, Thomas WTB, Flavell AJ, Marshall D (2010) Flapjack—graphical genotype visualization. Bioinformatics 26:3133–3134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moscou MJ, Lauter N, Steffenson B, Wise RP (2011) Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons. PLoS Genet 7:e1002208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niks RE, Walther U, Jaiser H, Martinez F, Rubiales D, Andersen O, Flath K, Gymer P, Heinrichs F, Jonsson R, Kuntze L, Rasmussen M, Richter E (2000) Resistance against barley leaf rust (Puccinia hordei) in West-European spring barley germplasm. Agronomie 20:769–782

    Article  Google Scholar 

  • Park RF (2003) Pathogenic specialization and pathotype distribution of Puccinia hordei in Australia, 1992 to 2001. Plant Dis 87:1311–1316

    Article  CAS  Google Scholar 

  • Park RF, Karakousis A (2002) Characerization and mapping of gene Rph19 conferring resistance to Puccinia hordei in the cultivar 'Reka 1′ and several Australian barleys. Plant Breed 121:232–236

    Article  CAS  Google Scholar 

  • Park RF, Golegaonkar PG, Derevnina L, Sandhu KS, Karaoglu H, Elmansour HM, Dracatos PM, Singh D (2015) Leaf rust of cultivated barley: pathology and control. Annu Rev Phytopathol 53:565–589

    Article  CAS  PubMed  Google Scholar 

  • Parlevliet JE, Van Der Beek JG, Pieters R (1981) Presence in Morocco of brown rust, Puccinia hordei with a wide range of virulence to barley. Cereal Rusts Bull 9:3–8

    Google Scholar 

  • Peterson RF, Campbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. The Cereal Division, Experimental Farms Service, Dominion Department of Agriculture

  • Prins R, Dreisigacker S, Pretorius Z, van Schalkwyk H, Wessels E, Smit C, Bender C, Singh D, Boyd LA (2016) Stem rust resistance in a geographically diverse collection of spring wheat lines collected from across Africa. Front Pl Sci 7:973

    Google Scholar 

  • Qi X, Niks RE, Stam P, Lindhout P (1998) Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theor Appl Genet 98:178–178

    Google Scholar 

  • Raman H, Raman R, Kilian A, Detering F, Long Y, Edwards D, Parkin IAP, Sharpe AG, Nelson MN, Larkan N, Zou J, Meng J, Aslam MN, Batley J, Cowling WA, Lydiate D (2013) A consensus map of rapeseed (Brassica napus L.) based on diversity array technology markers: applications in genetic dissection of qualitative and quantitative traits. BMC Genomics 14:277–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandhu KS, Singh D, Park RF (2014) Characterising seedling and adult plant resistance to Puccinia hordei in Hordeum vulgare. Ann Appl Biol 165:117–129

    Article  CAS  Google Scholar 

  • Singh D, Dracatos PM, Loughman R, Park RF (2017) Genetic mapping of resistance to Puccinia hordei in three barley doubled-haploid populations. Euphytica 213(1):1–10

    Article  CAS  Google Scholar 

  • Singh D, Dracatos P, Derevnina L, Zhou MX, Park RF (2015) Rph23: a new designated additive adult plant resistance gene to leaf rust in barley on chromosome 7H. Plant Breed 134:62–69

    Article  CAS  Google Scholar 

  • Sun Y (2007) Study of Puccinia hordei and its host resistances in Hordeum vulgare. PhD thesis, North Dakota State Univ, Fargo

  • Tan BH (1977) Evaluating host differentials of Puccinia hordei. Cereal Rusts Bull 5:17–23

    Google Scholar 

  • Tuleen IA, McDaniel ME (1971) Location of genes Pa and Pa5. Barley Newslett 15:106–107

    Google Scholar 

  • Turuspekov Y, Ormanbekova D, Rsaliev A, Abugalieva S (2016) Genome-wide association study on stem rust resistance in Kazakh spring barley lines. BMC Plant Biol 16(Suppl 1):6

    Article  PubMed  PubMed Central  Google Scholar 

  • Walther U (1987) Inheritance of resistance to Puccinia hordei Otth. In The spring barley variety Trumpf. Cereal rusts powdery mildews bull. 15:20–26

  • Weerasena JS, Steffenson BJ, Falk AB (2004) Conversion of an amplified fragment length polymorphism marker into a co-dominant marker in the mapping of the Rph15 gene conferring resistance to barley leaf rust, Puccinia hordei Otth. Theor Appl Genet 108:712–719

    Article  CAS  PubMed  Google Scholar 

  • Ziems LA, Hickey LT, Platz GJ, Franckowiak JD, Dracatos PM, Singh D, Park RF (2017) Characterization of Rph24: a gene conferring adult plant resistance to Puccinia hordei in barley. Phytopath PHYTO-08-16-0295-R

  • Ziems LA, Hickey LT, Hunt CH, Mace ES, Platz GJ, Franckowiak JD, Jordan DR (2014) Association mapping of resistance to Puccinia hordei in Australian barley breeding germplasm. Theor Appl Genet 127:1199–1212

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Matthew Williams, Gary Standen, and Richard Garcia provided valuable technical support.

Funding

The Australian Grains and Research Development Corporation (GRDC) financially supported this study.

Author information

Authors and Affiliations

Authors

Contributions

D. Singh and R.F. Park designed and executed the research; P. Dracatos, L. Ziems, and M. Pourkheirandish conducted genotyping and mapping; S. Tshewang and D. Singh conducted greenhouse tests; D. Singh planned and conducted field research and analyzed data; S. German conducted field screening and generated data at Uruguay site; R.A Fowler, L. Snyman, and G.J. Platz conducted field screening and generated data at Queensland site. P. Czembor and R.F Park contributed to germplasm for international panel; D. Singh wrote the manuscript with contribution from all authors.

Corresponding author

Correspondence to D. Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Ziems, L.A., Dracatos, P.M. et al. Genome-wide association studies provide insights on genetic architecture of resistance to leaf rust in a worldwide barley collection. Mol Breeding 38, 43 (2018). https://doi.org/10.1007/s11032-018-0803-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-018-0803-4

Keywords

Navigation