Skip to main content
Log in

Molecular mapping of a recessive powdery mildew resistance gene in spelt wheat cultivar Hubel

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most important wheat diseases worldwide. The basis for wheat powdery mildew resistance breeding consists of screening diversified host genetic resources with a range of races of the powdery mildew pathogen. Spelt wheat (Triticum aestivum ssp. spelta 2n = 6x = 42, AABBDD) is a close relative of common wheat (T. aestivum ssp. aestivum) and contains several known disease resistance genes, including Pm1d, Yr5, and Lr65. Here, we report the identification and mapping of a powdery mildew resistance gene in spelt wheat cultivar Hubel, which was introduced to China from Europe and is resistant to Chinese Bgt isolate E09 at the seedling stage. Genetic analysis of a recombinant inbred line population derived from a cross of Hubel and a susceptible early maturing mutant line indicated that Hubel possessed a recessive powdery mildew resistance gene (temporarily designated MlHubel). Markers linked to MlHubel were identified using bulked segregant analysis, simple sequence repeat, and expressed sequence tag-derived sequence tagged site methods. The linked markers were physically located on wheat chromosome 2D. Comparative genomic analysis indicated that the genetic interval covering MlHubel in wheat is highly colinear with the corresponding regions on Brachypodium distachyon chromosome 5 and Oryza sativa chromosome 4. Accordingly, the genetic map of MlHubel was established in comparison with B. distachyon 5L and O. sativa 4L, with the closest marker Xgwm265 being 0.4 cM from MlHubel. The identification of the recessive powdery mildew gene in spelt wheat suggests the potential of this accession along with its closely linked markers in breeding for resistance to powdery mildew.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alam MA, Xue F, Wang C, Ji W (2011) Powdery mildew resistance genes in wheat: identification and genetic analysis. J Mol Biol Res 1:20–35

    Article  Google Scholar 

  • Bennett FGA (1984) Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathol 33:279–300

    Article  Google Scholar 

  • Bertin P, Gregoire D, Massart S, Froidmont D (2001) Genetic diversity among European cultivated spelt revealed by microsatellites. Theor Appl Genet 102:148–156

    Article  CAS  Google Scholar 

  • Blatter RH, Jacomet S, Schlumbaum A (2004) About the origin of European spelt (Triticum spelta L.): allelic differentiation of the HMW Glutenin B1-1 and A1-2 subunit genes. Theor Appl Genet 108:360–367

    Article  CAS  PubMed  Google Scholar 

  • Bossolini E, Wicker T, Knobel PA, Keller B (2007) Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J 49:704–717

    Article  CAS  PubMed  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo MC, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KF, Edwards KJ, Bevan MW, Hall N (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cao AZ, Xing LP, Wang XY, Yang XM, Wang W, Sun YL, Qian C, Ni JL, Chen YP, Liu D, Wang XE, Chen PD (2011) Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA 108:7727–7732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Conley EJ, Nduati V, Gonzalez Hernandez JL, Mesfin A, Trudeau Spanjers M, Chao S, Lazo GR, Hummel DD, Anderson OD, Qi LL, Gill BS, Echalier B, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Peng JH, Lapitan NL, Pathan MS, Nguyen HT, Ma XF, Miftahudin MA, Gustafson JP, Greene RA, Sorrells ME, Hossain KG, Kalavacharla V, Kianian SF, Sidhu D, Dilbirligi M, Gill KS, Choi DW, Fenton RD, Close TJ, McGuire PE, Qualset CO, Anderson JA (2004) A 2600-locus chromosome bin map of wheat homoeologous group 2 reveals interstitial gene-rich islands and colinearity with rice. Genetics 168:625–637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Draper J, Mur LA, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, Routledge AP (2001) Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol 127:1539–1555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dyck PL, Sykes EE (1994) Genetics of leaf-rust resistance in three spelt wheats. Can J Plant Sci 74:231–233

    Article  Google Scholar 

  • Faris JD, Zhang ZC, Fellers JP, Gill BS (2008) Micro-colinearity between rice, Brachypodium, and Triticum monococcum at the wheat domestication locus Q. Funct Integr Genomics 8:149–164

    Article  CAS  PubMed  Google Scholar 

  • Feuillet C, Keller B (2001) Comparative genomics in the grass family molecular characterization of grass genome structure and evolution. Ann Bot 89:3–10

    Article  Google Scholar 

  • Gao HD, Zhu FF, Jiang YJ, Wu JZ, Yan W, Zhang QF, Jacobi A, Cai SB (2012) Genetic analysis and molecular mapping of a new powdery mildew resistant gene Pm46 in common wheat. Theor Appl Genet 125:967–973

    Article  CAS  PubMed  Google Scholar 

  • Griffey CA, Das MK, Stromberg EL (1993) Effectiveness of adult-plant resistance in reducing grain yield loss to powdery mildew in winter wheat. Plant Dis 77:618–622

    Article  Google Scholar 

  • He RL, Chang ZJ, Yang ZJ, Yuan ZY, Zhan HX, Zhang XJ, Liu J (2009) Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet 118:1173–1180

    Article  CAS  PubMed  Google Scholar 

  • Hsam SLK, Huang XQ, Ernst F, Hartl L, Zeller FJ (1998) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 5. Alleles at the Pm1 locus. Theor Appl Genet 96:1129–1134

    Article  CAS  Google Scholar 

  • Hsam SLK, Huang XQ, Zeller FJ (2001) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 6. Alleles at the Pm5 locus. Theor Appl Genet 102:127–133

    Article  CAS  Google Scholar 

  • Hua W, Liu ZJ, Zhu J, Xie CJ, Yang T, Zhou YL, Duan XY, Sun QX, Liu ZY (2009) Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet 119:223–230

    Article  CAS  PubMed  Google Scholar 

  • Huang XQ, Wang LX, Xu MX, Röder MS (2003) Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.). Theor Appl Genet 106:858–865

    CAS  PubMed  Google Scholar 

  • Jia JZ, Zhao SC, Kong XY, Li YR, Zhao GY, He WM, Appels R, Pfeifer M, Tao Y, Zhang XY, Jing RL, Zhang C, Ma YZ, Gao LF, Gao C, Spannagl M, Mayer KF, Li D, Pan SK, Zheng FY, Hu Q, Xia XC, Li JW, Liang QS, Chen J, Wicker T, Gou CY, Kuang HH, He GY, Luo YD, Keller B, Xia QJ, Lu P, Wang JY, Zou HF, Zhang RZ, Xu JY, Gao JL, Middleton C, Quan ZW, Liu GM, Wang J, Yang HM, Liu X, He ZH, Mao L, Wang J (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95

    Article  CAS  PubMed  Google Scholar 

  • Johnson JW, Baenziger PS, Yamazaki WT, Smith RT (1979) Effects of powdery mildew on yield and quality of isogenic lines of ‘Chancellor’ wheat. Crop Sci 19:349–352

    Article  Google Scholar 

  • Keller M, Keller B, Schachermayr G, Winzeler M, Schmid JE, Stamp P, Messmer MM (1999) Quantitative trait loci for resistance against powdery mildew in a segregating wheat × spelt population. Theor Appl Genet 98:903–912

    Article  CAS  Google Scholar 

  • Kema GHJ (1992) Resistance in spelt wheat to yellow rust I. Formal analysis and variation for gliadin patterns. Euphytica 63:207–217

    Google Scholar 

  • Kema GHJ, Lange W (1992) Resistance in spelt wheat to yellow rust II. Monosomic analysis of the Iranian accession 415. Euphytica 63:219–224

    Google Scholar 

  • Krattinger SG, Lagudah ES, Wicker T, Risk JM, Ashton AR, Selter LL, Matsumoto T, Keller B (2011) Lr34 multi-pathogen resistance ABC transporter: molecular analysis of homoeologous and orthologous genes in hexaploid wheat and other grass species. Plant J 65:392–403

    Article  CAS  PubMed  Google Scholar 

  • Leath S, Bowen KL (1989) Effects of powdery mildew, triadimenol seed treatment, and triadimefon foliar sprays on yield of winter wheat in North Carolina. Phytopathology 79:152–155

    Article  Google Scholar 

  • Leath S, Heun M (1990) Identification of powdery mildew resistance genes in cultivars of soft red winter wheat. Plant Dis 74:747–752

    Article  Google Scholar 

  • Lincoln S, Daly M, Lander E (1992) Constructing genetic maps with MAPMAKER/EXP3.0, 3rd edn. Whitehead Institute technical report. Whitehead Institute, Cambridge

  • Ling HQ, Zhao SC, Liu DC, Wang JY, Sun H, Zhang C, Fan HJ, Li D, Dong LL, Tao Y, Gao C, Wu HL, Li Y, Cui Y, Guo XS, Zheng SS, Wang B, Yu K, Liang QS, Yang WL, Lou XY, Chen J, Feng MJ, Jian JB, Zhang XF, Luo GB, Jiang Y, Liu JJ, Wang ZB, Sha YH, Zhang BR, Tang DZ, Shen QH, Xue PY, Zou SH, Wang XJ, Liu X, Wang FM, Yang YM, An XL, Dong ZY, Zhang KP, Luo MC, Dvorak J, Tong Y, Yang HM, Li ZS, Wang DW, Zhang AM (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90

    Article  CAS  PubMed  Google Scholar 

  • Liu RH, Meng JL (2003) MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (Beijing) 25:317–321

    Google Scholar 

  • Liu ZJ, Zhu J, Cui Y, Liang Y, Wu HB, Song W, Liu Q, Yang T, Sun QX, Liu ZY (2011) Identification and comparative mapping of a powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides) on chromosome 2BS. Theor Appl Genet 124:1041–1049

    Article  PubMed  Google Scholar 

  • Ma HQ, Kong ZX, Fu BS, Li N, Zhang LX, Jia HY, Ma ZQ (2011) Identification and mapping of a new powdery mildew resistance gene on chromosome 6D of common wheat. Theor Appl Genet 123:1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Macer RCF (1966) The formal and monosomic genetic analysis of stripe rust (Puccinia striiformis) resistance in wheat. In: Mackey J (ed) Proceedings of the 2nd international wheat genetics symposium, Lund, Sweden 1963, vol 2, pp 127–142

  • McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC (2011) Catalogue of gene symbols for wheat: 2011 supplement. http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohler V, Singh D, Singrün C, Park RF (2012) Characterization and mapping of Lr65 in spelt wheat ‘Altgold Rotkorn’. Plant Breed 131:252–257

    Article  CAS  Google Scholar 

  • Nesbitt M, Samuel D (1996) From staple crop to extinction? The archaeology and history of the hulled wheats. In: Padulosi S, Hammer K, Heller J (eds) Proceedings of the 1st international workshop on hulled wheats, 21–22 July 1995, Castelvecchio Pascoli, Tuscany, Italy, pp 41–100

  • Paterson A, Bowers JE, Burow MD, Draye X, Elsik CG, Jiang CX, Katsar CS, Lan TH, Lin YR, Ming R, Wright RJ (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, Akhunov ED, Dvořák J, Linkiewicz AM, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis CE, Greene RA, Kantety R, La Rota CM, Munkvold JD, Sorrells SF, Sorrells ME, Dilbirligi M, Sidhu D, Erayman M, Randhawa HS, Sandhu D, Bondareva SN, Gill KS, Mahmoud AA, Ma X-F, Miftahudin MA, Gustafson JP, Conley EJ, Nduati V, Gonzalez-Hernandez JL, Anderson JA, Peng JH, Lapitan NLV, Hossain KG, Kalavacharla V, Kianian SF, Pathan MS, Zhang DS, Nguyen HT, Choi D-W, Fenton RD, Close TJ, McGuire PE, Qualset CO, Gill BS (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qin B, Cao AZ, Wang HY, Chen TT, You FM, Liu YY, Ji JH, Liu DJ, Chen PD, Wang XE (2011) Collinearity-based marker mining for the fine mapping of Pm6, a powdery mildew resistance gene in wheat. Theor Appl Genet 123:207–218

    Article  PubMed  Google Scholar 

  • Rong JK, Millet E, Manisterski J, Feldman M (2000) A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115:121–126

    Article  CAS  Google Scholar 

  • Schneider DM, Heun M, Fischbeck G (1991) Inheritance of the powdery mildew resistance gene Pm9 in relation to Pm1 and Pm2 of wheat. Plant Breed 107:161–164

    Article  Google Scholar 

  • Sharp PJ, Kreis M, Shewry PR, Gale MD (1988) Location of beta-amylase sequences in wheat and its relatives. Theor Appl Genet 75:286–290

    Article  CAS  Google Scholar 

  • Singrün C, Hsam SL, Zeller FJ, Wenzel G, Mohler V (2004) Localization of a novel recessive powdery mildew resistance gene from common wheat line RD30 in the terminal region of chromosome 7AL. Theor Appl Genet 109:210–214

    Article  PubMed  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin MA, Ma X, Gustafson PJ, Qi LL, Echalier B, Gill BS, Matthews DE, Lazo GR, Chao S, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Zhang D, Nguyen HT, Peng J, Lapitan NL, Gonzalez-Hernandez JL, Anderson JA, Hossain K, Kalavacharla V, Kianian SF, Choi DW, Close TJ, Dilbirligi M, Gill KS, Steber C, Walker-Simmons MK, McGuire PE, Qualset CO (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun QX, Wei Y, Ni ZF, Xie CJ, Yang T (2002) Microsatellite marker for yellow rust resistance gene Yr5 in wheat introgressed from spelt wheat. Plant Breed 121:539–541

    Article  CAS  Google Scholar 

  • Sun XL, Liu D, Zhang H, Huo N, Zhou R, Jia J (2006) Identification and mapping of two new genes conferring resistance to powdery mildew from Aegilops tauschii (Coss.) Schmal. J Int Plant Biol 48:1204–1209

    Article  CAS  Google Scholar 

  • Vogel JP, Garvin DF, Mockler TC, Jeremy S, Rokhsar D, Bevan M (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  CAS  Google Scholar 

  • Wang YJ, Peng HR, Liu G, Xie CJ, Ni ZF, Yang T, Liu ZY, Sun QX (2010) Identification and molecular mapping of a leaf rust resistance gene in spelt wheat landrace Altgold. Euphytica 174:371–375

    Article  CAS  Google Scholar 

  • Xiao MG, Wang XM, Song FJ, Xu HX, Jiao JF, Li HJ (2013) Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor Appl Genet 126:1397–1403

    Article  CAS  PubMed  Google Scholar 

  • Xu HX, Yao GQ, Xiong L, Yang LL, Jiang YM, Fu BS, Zhao WF, Zhang ZZ, Zhang CQ, Ma ZQ (2008) Identification and mapping of pm2026: a recessive powdery mildew resistance gene in an einkorn (Triticum monococcum L.) accession. Theor Appl Genet 117:471–477

    Article  CAS  PubMed  Google Scholar 

  • Xue SL, Zhang ZZ, Lin F, Kong ZX, Cao Y, Li CJ, Yi HY, Mei MF, Zhu HL, Wu JZ, Xu HB, Zhao DM, Tian DG, Zhang CQ, Ma ZQ (2008) A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181–189

    Article  CAS  PubMed  Google Scholar 

  • Zhang HT, Guan HY, Li JT, Zhu J, Xie CJ, Zhou YL, Duan XY, Yang T, Sun QX, Liu ZY (2010) Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS–LRR analog in common wheat (Triticum aestivum L.). Theor Appl Genet 121:1613–1621

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of China (31271708, 31271710), the Ministry of Science and Technology (MOST) of China Program (2011YQ08005206), and the National Basic Research Program of China (2009CB118300). The authors are grateful to Prof. B.S. Gill and Mr. W.J. Raupp, Wheat Genetics Resource Centre, Kansas State University, USA, for provision of the Chinese Spring aneuploid stocks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaojie Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, F., Song, N., Shen, H. et al. Molecular mapping of a recessive powdery mildew resistance gene in spelt wheat cultivar Hubel. Mol Breeding 34, 491–500 (2014). https://doi.org/10.1007/s11032-014-0052-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0052-0

Keywords

Navigation