Skip to main content
Log in

How cytosolic compartments play safeguard functions against neuroinflammation and cell death in cerebral ischemia

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Ischemic stroke is the second leading cause of mortality and disability globally. Neuronal damage following ischemic stroke is rapid and irreversible, and eventually results in neuronal death. In addition to activation of cell death signaling, neuroinflammation is also considered as another pathogenesis that can occur within hours after cerebral ischemia. Under physiological conditions, subcellular organelles play a substantial role in neuronal functionality and viability. However, their functions can be remarkably perturbed under neurological disorders, particularly cerebral ischemia. Therefore, their biochemical and structural response has a determining role in the sequel of neuronal cells and the progression of disease. However, their effects on cell death and neuroinflammation, as major underlying mechanisms of ischemic stroke, are still not understood. This review aims to provide a comprehensive overview of the contribution of each organelle on these pathological processes after ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

The data sets used during the current study are available from the corresponding author on reasonable request.

References

  • Abramov AY, Scorziello A, Duchen MR (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 27(5):1129–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20(3):319–325

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Dar NJ, Bhat ZS, Hussain A, Shah A, Liu H et al (2014) Inflammation in ischemic stroke: mechanisms, consequences and possible drug targets. CNS Neurol Disord Drug Targets 13(8):1378–1396

    Article  CAS  PubMed  Google Scholar 

  • Ahn EH, Kim DW, Kang HW, Shin MJ, Won MH, Kim J et al (2010) Transduced PEP-1-ribosomal protein S3 (rpS3) ameliorates 12-O-tetradecanoylphorbol-13-acetate-induced inflammation in mice. Toxicology 276(3):192–197

    Article  CAS  PubMed  Google Scholar 

  • Alborzinia H, Ignashkova TI, Dejure FR, Gendarme M, Theobald J, Wölfl S et al (2018) Golgi stress mediates redox imbalance and ferroptosis in human cells. Commun Biol 1(1):210

    Article  PubMed  PubMed Central  Google Scholar 

  • Alishahi M, Farzaneh M, Ghaedrahmati F, Nejabatdoust A, Sarkaki A and Khoshnam SE (2019) NLRP3 inflammasome in ischemic stroke: As possible therapeutic target. 1747493019841242

  • Alishahi M, Farzaneh M, Ghaedrahmati F, Nejabatdoust A, Sarkaki A, Khoshnam SE (2019b) NLRP3 inflammasome in ischemic stroke: as possible therapeutic target. Int J Stroke 14(6):574–591

    Article  PubMed  Google Scholar 

  • Althausen S, Mengesdorf T, Mies G, Olah L, Nairn AC, Proud CG et al (2001) Changes in the phosphorylation of initiation factor eIF-2alpha, elongation factor eEF-2 and p70 S6 kinase after transient focal cerebral ischaemia in mice. J Neurochem 78(4):779–787

    Article  CAS  PubMed  Google Scholar 

  • Altintas O, Altintas MO, Aydin MS, Baran O, Antar V, Esrefoglu M, et al (2016) Neuroprotective Effects of Chronic Fenofibrate Treatment via Modulating the Immunoreactivity of Cleaved Caspase-3 in Stroke Induced by Transient Middle Cerebral Occlusion Rat Model. Turk Neurosurg

  • Apetri AC, Horwich AL (2008) Chaperonin chamber accelerates protein folding through passive action of preventing aggregation. Proc Natl Acad Sci USA 105(45):17351–17355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appelqvist H, Waster P, Kagedal K, Ollinger K (2013) The lysosome: from waste bag to potential therapeutic target. J Mol Cell Biol 5(4):214–226

    Article  CAS  PubMed  Google Scholar 

  • Badiola N, Penas C, Miñano-Molina A, Barneda-Zahonero B, Fadó R, Sánchez-Opazo G et al (2011) Induction of ER stress in response to oxygen-glucose deprivation of cortical cultures involves the activation of the PERK and IRE-1 pathways and of caspase-12. Cell Death Dis 2(4):e149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434(7033):658

    Article  CAS  PubMed  Google Scholar 

  • Bando Y, Kominami E, Katunuma N (1986) Purification and tissue distribution of rat cathepsin L. J Biochem 100(1):35–42

    Article  CAS  PubMed  Google Scholar 

  • Bano D, Nicotera P (2007) Ca2+ signals and neuronal death in brain ischemia. Stroke 38(2 Suppl):674–676

    Article  CAS  PubMed  Google Scholar 

  • Bauernfeind F, Ablasser A, Bartok E, Kim S, Schmid-Burgk J, Cavlar T et al (2011) Inflammasomes: current understanding and open questions. Cell Mol Life Sci 68(5):765–783

    Article  CAS  PubMed  Google Scholar 

  • Benchoua A, Braudeau J, Reis A, Couriaud C, Onteniente B (2004) Activation of proinflammatory caspases by cathepsin B in focal cerebral ischemia. J Cereb Blood Flow Metab 24(11):1272–1279

    Article  CAS  PubMed  Google Scholar 

  • Bernstein HG, Kirschke H, Wiederanders B, Kloss P, Rinne A, Dorn A (1988) Cathepsin B immunoreactivity is widely distributed in the rat brain. J Hirnforsch 29(1):17–19

    CAS  PubMed  Google Scholar 

  • Bidere N, Lorenzo HK, Carmona S, Laforge M, Harper F, Dumont C et al (2003) Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J Biol Chem 278(33):31401–31411

    Article  CAS  PubMed  Google Scholar 

  • Billadeau DD, Burkhardt JK (2006) Regulation of cytoskeletal dynamics at the immune synapse: new stars join the actin troupe. Traffic (copenhagen, Denmark) 7(11):1451–1460

    Article  CAS  Google Scholar 

  • Blackwood EA, Azizi K, Thuerauf DJ, Paxman RJ, Plate L, Kelly JW et al (2019) Pharmacologic ATF6 activation confers global protection in widespread disease models by reprograming cellular proteostasis. Nat Commun 10(1):187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blomgran R, Zheng L, Stendahl O (2007) Cathepsin-cleaved Bid promotes apoptosis in human neutrophils via oxidative stress-induced lysosomal membrane permeabilization. J Leukoc Biol 81(5):1213–1223

    Article  CAS  PubMed  Google Scholar 

  • Bodalia A, Li H, Jackson MF (2013) Loss of endoplasmic reticulum Ca2+ homeostasis: contribution to neuronal cell death during cerebral ischemia. Acta Pharmacol Sin 34(1):49–59

    Article  CAS  PubMed  Google Scholar 

  • Boujon V, Uhlemann R, Wegner S, Wright MB, Laufs U, Endres M et al (2019) Dual PPARα/γ agonist aleglitazar confers stroke protection in a model of mild focal brain ischemia in mice. J Mol Med (berl) 97(8):1127–1138

    Article  CAS  Google Scholar 

  • Boutin H, LeFeuvre RA, Horai R, Asano M, Iwakura Y, Rothwell NJ (2001) Role of IL-1alpha and IL-1beta in ischemic brain damage. J Neurosci 21(15):5528–5534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27(50):6434–6451

    Article  CAS  PubMed  Google Scholar 

  • Brough D, Le Feuvre RA, Wheeler RD, Solovyova N, Hilfiker S, Rothwell NJ et al (2003) Ca2+ stores and Ca2+ entry differentially contribute to the release of IL-1β and IL-1α from murine macrophages. J Immunol 170(6):3029–3036

    Article  CAS  PubMed  Google Scholar 

  • Browning M, Baudry M, Lynch G (1982) Evidence that high frequency stimulation influences the phosphorylation of pyruvate dehydrogenase and that the activity of this enzyme is linked to mitochondrial calcium sequestration. Prog Brain Res 56:317–337

    Article  CAS  PubMed  Google Scholar 

  • Budde RJ, Fang TK, Randall DD (1988) Regulation of the phosphorylation of mitochondrial pyruvate dehydrogenase complex in situ: effects of respiratory substrates and calcium. Plant Physiol 88(4):1031–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bull R, Finkelstein JP, Gálvez J, Sánchez G, Donoso P, Behrens MI et al (2008) Ischemia enhances activation by Ca2+ and redox modification of ryanodine receptor channels from rat brain cortex. J Neurosci 28(38):9463–9472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biol Med 29(3–4):222–230

    Article  CAS  Google Scholar 

  • Campbell BC (2019) Advances in stroke medicine. Med J Aust 210(8):367–374

    Article  PubMed  Google Scholar 

  • Cao SS, Kaufman RJ (2014) Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 21(3):396–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carloni S, Albertini MC, Galluzzi L, Buonocore G, Proietti F, Balduini W (2014) Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: role of protein synthesis and autophagic pathways. Exp Neurol 255:103–112

    Article  CAS  PubMed  Google Scholar 

  • Carraro M, Bernardi P (2016) Calcium and reactive oxygen species in regulation of the mitochondrial permeability transition and of programmed cell death in yeast. Cell Calcium 60(2):102–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caso JR, Moro MA, Lorenzo P, Lizasoain I, Leza JC (2007) Involvement of IL-1beta in acute stress-induced worsening of cerebral ischaemia in rats. Eur Neuropsychopharmacol 17(9):600–607

    Article  CAS  PubMed  Google Scholar 

  • Catanese L, Tarsia J, Fisher M (2017) Acute ischemic stroke therapy overview. Circ Res 120(3):541–558

    Article  CAS  PubMed  Google Scholar 

  • Chamorro A, Urra X, Planas AM (2007) Infection after acute ischemic stroke: a manifestation of brain-induced immunodepression. Stroke 38(3):1097–1103

    Article  PubMed  Google Scholar 

  • Chang Y, Zhu J, Wang D, Li H, He Y, Liu K et al (2020) NLRP3 inflammasome-mediated microglial pyroptosis is critically involved in the development of post-cardiac arrest brain injury. J Neuroinflammation 17(1):219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao DT, Korsmeyer SJ (1998) BCL-2 family: regulators of cell death. Annu Rev Immunol 16(1):395–419

    Article  CAS  PubMed  Google Scholar 

  • Chavez-Valdez R, Flock DL, Martin LJ, Northington FJ (2016) Endoplasmic reticulum pathology and stress response in neurons precede programmed necrosis after neonatal hypoxia-ischemia. Int J Dev Neurosci 48:58–70

    Article  PubMed  Google Scholar 

  • Chen J, Chen ZJ (2018) PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature 564(7734):71–76

    Article  CAS  PubMed  Google Scholar 

  • Chen S-D, Lee J-M, Yang D-I, Nassief A, Hsu CY (2002) Combination Therapy for Ischemic Stroke. Am J Cardiovasc Drugs 2(5):303–313

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Kintner DB, Luo J, Baba A, Matsuda T, Sun D (2008) Endoplasmic reticulum Ca2+ dysregulation and endoplasmic reticulum stress following in vitro neuronal ischemia: role of Na+-K+-Cl- cotransporter. J Neurochem 106(4):1563–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SD, Lin TK, Yang DI, Lee SY, Shaw FZ, Liou CW et al (2010) Protective effects of peroxisome proliferator-activated receptors γ coactivator-1α against neuronal cell death in the hippocampal CA1 subfield after transient global ischemia. J Neurosci Res 88(3):605–613

    CAS  PubMed  Google Scholar 

  • Chen J-H, Kuo H-C, Lee K-F, Tsai T-H (2015) Global proteomic analysis of brain tissues in transient ischemia brain damage in rats. Int J Mol Sci 16(6):11873–11891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Dixon BJ, Doycheva DM, Li B, Zhang Y, Hu Q et al (2018) IRE1α inhibition decreased TXNIP/NLRP3 inflammasome activation through miR-17-5p after neonatal hypoxic-ischemic brain injury in rats. J Neuroinflammation 15(1):32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Y-C, Chou W-H, Tsou H-H, Fang C-P, Liu T-H, Tsao H-H et al (2019) A Post-hoc Study of D-Amino Acid Oxidase in Blood as an Indicator of Post-stroke Dementia. Front Neurol 10:402–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheon SY, Kim EJ, Kim JM, Koo B-N (2018) Cell Type-Specific Mechanisms in the Pathogenesis of Ischemic Stroke: The Role of Apoptosis Signal-Regulating Kinase 1. Oxid Med Cell Longev 2018:2596043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chou SH-Y, Lan J, Esposito E, Ning M, Balaj L, Ji X et al (2017) Extracellular mitochondria in cerebrospinal fluid and neurological recovery after subarachnoid hemorrhage. Stroke 48(8):2231–2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chouchani ET, Pell VR, James AM, Work LM, Saeb-Parsy K, Frezza C et al (2016) A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. Cell Metab 23(2):254–263

    Article  CAS  PubMed  Google Scholar 

  • Cirman T, Oresic K, Mazovec GD, Turk V, Reed JC, Myers RM et al (2004) Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem 279(5):3578–3587

    Article  CAS  PubMed  Google Scholar 

  • Claudio N, Dalet A, Gatti E, Pierre P (2013) Mapping the crossroads of immune activation and cellular stress response pathways. EMBO J 32(9):1214–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Codolo G, Plotegher N, Pozzobon T, Brucale M, Tessari I, Bubacco L et al (2013) Triggering of inflammasome by aggregated alpha-synuclein, an inflammatory response in synucleinopathies. PLoS ONE 8(1):e55375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collino M, Aragno M, Mastrocola R, Benetti E, Gallicchio M, Dianzani C et al (2006a) Oxidative stress and inflammatory response evoked by transient cerebral ischemia/reperfusion: effects of the PPAR-alpha agonist WY14643. Free Radic Biol Med 41(4):579–589

    Article  CAS  PubMed  Google Scholar 

  • Collino M, Aragno M, Mastrocola R, Gallicchio M, Rosa AC, Dianzani C et al (2006b) Modulation of the oxidative stress and inflammatory response by PPAR-gamma agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion. Eur J Pharmacol 530(1–2):70–80

    Article  CAS  PubMed  Google Scholar 

  • Cross JL, Meloni BP, Bakker AJ, Lee S, Knuckey NW (2010) Modes of Neuronal Calcium Entry and Homeostasis following Cerebral Ischemia. Stroke Res Treat 2010:316862–316862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui D, Shang H, Zhang X, Jiang W, Jia X (2016) Cardiac arrest triggers hippocampal neuronal death through autophagic and apoptotic pathways. Sci Rep 6:27642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui D, Sun D, Wang X, Yi L, Kulikowicz E, Reyes M et al (2017) Impaired autophagosome clearance contributes to neuronal death in a piglet model of neonatal hypoxic-ischemic encephalopathy. Cell Death Dis 8(7):e2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Culmsee C, Zhu C, Landshamer S, Becattini B, Wagner E, Pellecchia M et al (2005) Apoptosis-inducing factor triggered by poly (ADP-ribose) polymerase and Bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia. J Neurosci 25(44):10262–10272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Castro MAG, Bunt G, Wouters FS (2016) Cathepsin B launches an apoptotic exit effort upon cell death-associated disruption of lysosomes. Cell Death Discovery 2(1):16012

    Article  CAS  Google Scholar 

  • Def Webster H, Ames A (1965) Reversible and irreversible changes in the fine structure of nervous tissue during oxygen and glucose deprivation. J Cell Biol 26(3):885–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delerive P, Fruchart JC, Staels B (2001) Peroxisome proliferator-activated receptors in inflammation control. J Endocrinol 169(3):453–459

    Article  CAS  PubMed  Google Scholar 

  • DeLuca HF, Engstrom GW (1961) Calcium uptake by rat kidney mitochondria. Proc Natl Acad Sci USA 47(11):1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denes A, Lopez-Castejon G, Brough D (2012) Caspase-1: is IL-1 just the tip of the ICEberg? Cell Death Dis 3:e338

  • Deng Y, Lu J, Sivakumar V, Ling EA, Kaur C (2008) Amoeboid microglia in the periventricular white matter induce oligodendrocyte damage through expression of proinflammatory cytokines via MAP kinase signaling pathway in hypoxic neonatal rats. Brain Pathol 18(3):387–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta (BBA)-Bioenergetics 1787(11):1309–1316

    Article  CAS  Google Scholar 

  • Deplanque D, Gele P, Petrault O, Six I, Furman C, Bouly M et al (2003) Peroxisome proliferator-activated receptor-alpha activation as a mechanism of preventive neuroprotection induced by chronic fenofibrate treatment. J Neurosci 23(15):6264–6271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dergunova LV, Filippenkov IB, Stavchansky VV, Denisova AE, Yuzhakov VV, Mozerov SA et al (2018) Genome-wide transcriptome analysis using RNA-Seq reveals a large number of differentially expressed genes in a transient MCAO rat model. BMC Genomics 19(1):655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dey S, Baird TD, Zhou D, Palam LR, Spandau DF, Wek RC (2010) Both transcriptional regulation and translational control of ATF4 are central to the integrated stress response. J Biol Chem 285(43):33165–33174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz F, Komuniecki R (1996) Characterization of the α-ketoglutarate dehydrogenase complex from Fasciola hepatica: Potential implications for the role of calcium in the regulation of helminth mitochondrial metabolism. Mol Biochem Parasitol 81(2):243–246

    Article  CAS  PubMed  Google Scholar 

  • Dietrich WD, Nakayama H, Watson BD, Kanemitsu H (1989) Morphological consequences of early reperfusion following thrombotic or mechanical occlusion of the rat middle cerebral artery. Acta Neuropathol 78(6):605–614

    Article  CAS  PubMed  Google Scholar 

  • Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke Lancet 371(9624):1612–1623

    Article  CAS  PubMed  Google Scholar 

  • Duprez L, Wirawan E, Vanden Berghe T, Vandenabeele P (2009) Major cell death pathways at a glance. Microbes Infect 11(13):1050–1062

    Article  CAS  PubMed  Google Scholar 

  • Ekholm A, Katsura K, Siesjö BK (1991) Tissue lactate content and tissue PCO2 in complete brain ischaemia: implications for compartmentation of H+. Neurol Res 13(2):74–76

    Article  CAS  PubMed  Google Scholar 

  • Engel T, Plesnila N, Prehn JH, Henshall DC (2011) In vivo contributions of BH3-only proteins to neuronal death following seizures, ischemia, and traumatic brain injury. J Cereb Blood Flow Metab 31(5):1196–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fakharnia F, Khodagholi F, Dargahi L, Ahmadiani A (2017) Prevention of Cyclophilin D-Mediated mPTP Opening Using Cyclosporine-A Alleviates the Elevation of Necroptosis, Autophagy and Apoptosis-Related Markers Following Global Cerebral Ischemia-Reperfusion. J Mol Neurosci 61(1):52–60

    Article  CAS  PubMed  Google Scholar 

  • Felderhoff-Mueser U, Schmidt OI, Oberholzer A, Bührer C, Stahel PF (2005) IL-18: a key player in neuroinflammation and neurodegeneration? Trends Neurosci 28(9):487–493

    Article  CAS  PubMed  Google Scholar 

  • Feng D, Wang B, Wang L, Abraham N, Tao K, Huang L, et al (2017) Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings. J Pineal Res 62(3)

  • Feng Y-S, Tan Z-X, Wang M-M, Xing Y, Dong F and Zhang F (2020) Inhibition of NLRP3 Inflammasome: A Prospective Target for the Treatment of Ischemic Stroke. Front Cellular Neurosci

  • Fradejas N, Pastor MD, Mora-Lee S, Tranque P, Calvo S (2008) SEPS1 gene is activated during astrocyte ischemia and shows prominent antiapoptotic effects. J Mol Neurosci 35(3):259–265

    Article  CAS  PubMed  Google Scholar 

  • Fradejas N, Serrano-Perez Mdel C, Tranque P, Calvo S (2011) Selenoprotein S expression in reactive astrocytes following brain injury. Glia 59(6):959–972

    Article  PubMed  Google Scholar 

  • Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G (2009) The Inflammasome: A Caspase-1 Activation Platform Regulating Immune Responses and Disease Pathogenesis. Nat Immunol 10(3):241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franke M, Bieber M, Kraft P, Weber ANR, Stoll G, Schuhmann MK (2021) The NLRP3 inflammasome drives inflammation in ischemia/reperfusion injury after transient middle cerebral artery occlusion in mice. Brain Behav Immun 92:221–231

    Article  CAS  Google Scholar 

  • Franklin JL (2011) Redox regulation of the intrinsic pathway in neuronal apoptosis. Antioxid Redox Signal 14(8):1437–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fumagalli S, Fiordaliso F, Perego C, Corbelli A, Mariani A, De Paola M et al (2019) The phagocytic state of brain myeloid cells after ischemia revealed by superresolution structured illumination microscopy. J Neuroinflammation 16(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  • GBD (2016) Stroke Collaborators (2019) Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(5):439–458

    Google Scholar 

  • Georgiades P, Allan VJ, Wright GD, Woodman PG, Udommai P, Chung MA et al (2017) The flexibility and dynamics of the tubules in the endoplasmic reticulum. Sci Rep 7(1):16474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ginet V, Puyal J, Clarke PGH, Truttmann AC (2009) Enhancement of Autophagic Flux after Neonatal Cerebral Hypoxia-Ischemia and Its Region-Specific Relationship to Apoptotic Mechanisms. Am J Pathol 175(5):1962–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giorgio V, Guo L, Bassot C, Petronilli V, Bernardi P (2018) Calcium and regulation of the mitochondrial permeability transition. Cell Calcium 70:56–63

    Article  CAS  PubMed  Google Scholar 

  • Gong Z, Pan J, Shen Q, Li M, Peng Y (2018) Mitochondrial dysfunction induces NLRP3 inflammasome activation during cerebral ischemia/reperfusion injury. J Neuroinflammation 15(1):242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305(5684):626–629

    Article  CAS  PubMed  Google Scholar 

  • Grygiel-Górniak B (2014) Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications - a review. Nutr J 13(1):1–10

    Article  CAS  Google Scholar 

  • Gulati S, Singh AK, Irazu C, Orak J, Rajagopalan PR, Fitts CT et al (1992) Ischemia-reperfusion injury: biochemical alterations in peroxisomes of rat kidney. Arch Biochem Biophys 295(1):90–100

    Article  CAS  PubMed  Google Scholar 

  • Gurung P, Lukens JR, Kanneganti T-D (2015) Mitochondria: diversity in the regulation of the NLRP3 inflammasome. Trends Mol Med 21(3):193–201

    Article  CAS  PubMed  Google Scholar 

  • Gwak M, Park P, Kim K, Lim K, Jeong S, Baek C, et al (2008) The effects of dantrolene on hypoxic-ischemic injury in the neonatal rat brain. Anesth Analg 106(1):227–233. Table of contents

  • Halestrap AP, McStay GP, Clarke SJ (2002) The permeability transition pore complex: another view. Biochimie 84(2–3):153–166

    Article  CAS  PubMed  Google Scholar 

  • Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9(8):857–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han L, Cai W, Mao L, Liu J, Li P, Leak RK et al (2015) Rosiglitazone Promotes White Matter Integrity and Long-Term Functional Recovery After Focal Cerebral Ischemia. Stroke 46(9):2628–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hausenloy DJ, Yellon DM (2013) Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Investig 123(1):92–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayakawa K, Chan SJ, Mandeville ET, Park JH, Bruzzese M, Montaner J et al (2018) Protective effects of endothelial progenitor cell-derived extracellular mitochondria in brain endothelium. Stem Cells 36(9):1404–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He W, Hu Z (2012) The role of the Golgi-resident SPCA Ca2+/Mn2+ pump in ionic homeostasis and neural function. Neurochem Res 37(3):455–468

    Article  CAS  PubMed  Google Scholar 

  • He Y, Hara H, Núñez G (2016) Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem Sci 41(12):1012–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Ning N, Zhou Q, Khoshnam S E and Farzaneh M (2019) Mitochondria as a therapeutic target for ischemic stroke. Free Rad Biol Med

  • He Z, Ning N, Zhou Q, Khoshnam SE, Farzaneh M (2020) Mitochondria as a therapeutic target for ischemic stroke. Free Radical Biol Med 146:45–58

    Article  CAS  Google Scholar 

  • Heinrich M, Neumeyer J, Jakob M, Hallas C, Tchikov V, Winoto-Morbach S et al (2004) Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death Differ 11(5):550–563

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Fonseca K, Massieu L (2005) Disruption of endoplasmic reticulum calcium stores is involved in neuronal death induced by glycolysis inhibition in cultured hippocampal neurons. J Neurosci Res 82(2):196–205

    Article  PubMed  CAS  Google Scholar 

  • Herrmann AG, Deighton RF, Le Bihan T, McCulloch MC, Searcy JL, Kerr LE et al (2013) Adaptive changes in the neuronal proteome: mitochondrial energy production, endoplasmic reticulum stress, and ribosomal dysfunction in the cellular response to metabolic stress. J Cereb Blood Flow Metab 33(5):673–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornung V, Latz E (2010) Critical functions of priming and lysosomal damage for NLRP3 activation. Eur J Immunol 40(3):620–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossmann KA, Behar KL, Rothman DL (1993) NMR-spectroscopic investigation of cerebral reanimation after prolonged ischemia. Acta Neurochir Suppl (wien) 57:21–29

    CAS  Google Scholar 

  • Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140(6):900–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu BR, Martone ME, Jones YZ, Liu CL (2000) Protein aggregation after transient cerebral ischemia. J Neurosci 20(9):3191–3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Zeng L, Xie L, Lu W, Zhang J, Li T et al (2007) Morphological alteration of Golgi apparatus and subcellular compartmentalization of TGF-beta1 in Golgi apparatus in gerbils following transient forebrain ischemia. Neurochem Res 32(11):1927–1931

    Article  CAS  PubMed  Google Scholar 

  • Hua R, Wei H, Liu C, Shi Z, Xing Y (2019) Phosphorylated mTORC1 represses autophagic-related mRNA translation in neurons exposed to ischemia-reperfusion injury. J Cell Biochem 120(9):15915–15923

    Article  CAS  PubMed  Google Scholar 

  • Hwang IK, Yoo KY, Kim DW, Kim SY, Park JH, Ryoo ZY et al (2008) Ischemia-induced ribosomal protein S3 expressional changes and the neuroprotective effect against experimental cerebral ischemic damage. J Neurosci Res 86(8):1823–1835

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C, Buckwalter M S and Anrather J (2020) Immune responses to stroke: mechanisms, modulation, and therapeutic potential. J Clin Invest

  • Ibuki T, Yamasaki Y, Mizuguchi H, Sokabe M (2012) Protective effects of XBP1 against oxygen and glucose deprivation/reoxygenation injury in rat primary hippocampal neurons. Neurosci Lett 518(1):45–48

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Jiang XF, Katayama T, Osada S, Umesono K, Namura S (2003) Brain protection by resveratrol and fenofibrate against stroke requires peroxisome proliferator-activated receptor alpha in mice. Neurosci Lett 352(3):203–206

    Article  CAS  PubMed  Google Scholar 

  • Inta I, Paxian S, Maegele I, Zhang W, Pizzi M, Spano P et al (2006) Bim and Noxa are candidates to mediate the deleterious effect of the NF-κB subunit RelA in cerebral ischemia. J Neurosci 26(50):12896–12903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ip YT, Davis RJ (1998) Signal transduction by the c-Jun N-terminal kinase (JNK)–from inflammation to development. Curr Opin Cell Biol 10(2):205–219

    Article  CAS  PubMed  Google Scholar 

  • Irigoín F, Inada NM, Fernandes MP, Piacenza L, Gadelha FR, Vercesi AE et al (2009) Mitochondrial calcium overload triggers complement-dependent superoxide-mediated programmed cell death in Trypanosoma cruzi. Biochem J 418(3):595–604

    Article  PubMed  Google Scholar 

  • Ishikawa M, Vowinkel T, Stokes KY, Arumugam TV, Yilmaz G, Nanda A et al (2005) CD40/CD40 ligand signaling in mouse cerebral microvasculature after focal ischemia/reperfusion. Circulation 111(13):1690–1696

    Article  CAS  PubMed  Google Scholar 

  • Ishrat T, Mohamed IN, Pillai B, Soliman S, Fouda AY, Ergul A et al (2015) Thioredoxin-interacting protein: a novel target for neuroprotection in experimental thromboembolic stroke in mice. Mol Neurobiol 51(2):766–778

    Article  CAS  PubMed  Google Scholar 

  • Jamison JT, Kayali F, Rudolph J, Marshall M, Kimball SR, DeGracia DJ (2008) Persistent redistribution of poly-adenylated mRNAs correlates with translation arrest and cell death following global brain ischemia and reperfusion. Neuroscience 154(2):504–520

    Article  CAS  PubMed  Google Scholar 

  • Jamison JT, Szymanski JJ, Degracia DJ (2011) Organelles do not colocalize with mRNA granules in post-ischemic neurons. Neuroscience 199:394–400

    Article  CAS  PubMed  Google Scholar 

  • Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA (2019) Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation 16(1):142–142

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeffs GJ, Meloni BP, Bakker AJ, Knuckey NW (2007) The role of the Na+/Ca2+ exchanger (NCX) in neurons following ischaemia. J Clin Neurosci 14(6):507–514

    Article  CAS  PubMed  Google Scholar 

  • Jennings R, Hawkins HK, Lowe JE, Hill ML, Klotman S, Reimer KA (1978) Relation between high energy phosphate and lethal injury in myocardial ischemia in the dog. Am J Pathol 92(1):187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin K, Mao XO, Eshoo MW, Nagayama T, Minami M, Simon RP et al (2001) Microarray analysis of hippocampal gene expression in global cerebral ischemia. Ann Neurol 50(1):93–103

    Article  CAS  PubMed  Google Scholar 

  • Joshi AU, Minhas PS, Liddelow SA, Haileselassie B, Andreasson KI, Dorn G 2nd et al (2019) Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci 22(10):1635–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang S-J, Wang S, Hara H, Peterson EP, Namura S, Amin-Hanjani S et al (2000) Dual Role of Caspase-11 in Mediating Activation of Caspase-1 and Caspase-3 under Pathological Conditions. J Cell Biol 149(3):613–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilinc M, Gursoy-Ozdemir Y, Gurer G, Erdener SE, Erdemli E, Can A et al (2010) Lysosomal rupture, necroapoptotic interactions and potential crosstalk between cysteine proteases in neurons shortly after focal ischemia. Neurobiol Dis 40(1):293–302

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7(12):1013–1030

    Article  CAS  PubMed  Google Scholar 

  • Kitayama T, Ogita K, Yoneda Y (1999) Sustained potentiation of AP1 DNA binding is not always associated with neuronal death following systemic administration of kainic acid in murine hippocampus. Neurochem Int 35(6):453–462

    Article  CAS  PubMed  Google Scholar 

  • Kominami E, Tsukahara T, Bando Y, Katunuma N (1985) Distribution of cathepsins B and H in rat tissues and peripheral blood cells. J Biochem 98(1):87–93

    Article  CAS  PubMed  Google Scholar 

  • Koopman WJ, Willems PH, Smeitink JA (2012) Monogenic mitochondrial disorders. N Engl J Med 366(12):1132–1141

    Article  CAS  PubMed  Google Scholar 

  • Kota BP, Huang TH-W, Roufogalis BD (2005) An overview on biological mechanisms of PPARs. Pharmacol Res 51(2):85–94

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthi RV, Ikeda T, Feigin VL (2020) Global, Regional and Country-Specific Burden of Ischaemic Stroke, Intracerebral Haemorrhage and Subarachnoid Haemorrhage: A Systematic Analysis of the Global Burden of Disease Study 2017. Neuroepidemiology 54(2):171–179

    Article  PubMed  Google Scholar 

  • Kroemer G (1999) Mitochondrial control of apoptosis: an overview. Biochemical Society Symposia, Portland Press Limited

  • Kucharz K, Wieloch T, Toresson H (2011) Rapid fragmentation of the endoplasmic reticulum in cortical neurons of the mouse brain in situ following cardiac arrest. J Cereb Blood Flow Metab 31(8):1663–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Azam S, Sullivan JM, Owen C, Cavener DR, Zhang P et al (2001) Brain ischemia and reperfusion activates the eukaryotic initiation factor 2alpha kinase. PERK J Neurochem 77(5):1418–1421

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Krause GS, Yoshida H, Mori K, DeGracia DJ (2003) Dysfunction of the unfolded protein response during global brain ischemia and reperfusion. J Cereb Blood Flow Metab 23(4):462–471

    Article  CAS  PubMed  Google Scholar 

  • Lamkanfi M, Dixit VM (2010) Manipulation of host cell death pathways during microbial infections. Cell Host Microbe 8(1):44–54

    Article  CAS  PubMed  Google Scholar 

  • Lammerding L, Slowik A, Johann S, Beyer C, Zendedel A (2016) Poststroke Inflammasome Expression and Regulation in the Peri-Infarct Area by Gonadal Steroids after Transient Focal Ischemia in the Rat Brain. Neuroendocrinology 103(5):460–475

    Article  CAS  PubMed  Google Scholar 

  • Laurenti G, Benedetti E, D’Angelo B, Cristiano L, Cinque B, Raysi S et al (2011) Hypoxia induces peroxisome proliferator-activated receptor alpha (PPARalpha) and lipid metabolism peroxisomal enzymes in human glioblastoma cells. J Cell Biochem 112(12):3891–3901

    Article  CAS  PubMed  Google Scholar 

  • Lee G-S, Subramanian N, Kim AI, Aksentijevich I, Goldbach-Mansky R, Sacks DB et al (2012a) The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca 2+ and cAMP. Nature 492(7427):123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HM, Yuk JM, Kim KH, Jang J, Kang G, Park JB et al (2012b) Mycobacterium abscessus activates the NLRP3 inflammasome via Dectin-1–Syk and p62/SQSTM1. Immunol Cell Biol 90(6):601–610

    Article  CAS  PubMed  Google Scholar 

  • Leng T, Shi Y, Xiong ZG, Sun D (2014) Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke? Prog Neurobiol 115:189–209

    Article  CAS  PubMed  Google Scholar 

  • Lesnefsky EJ, Chen Q, Tandler B, Hoppel CL (2017) Mitochondrial dysfunction and myocardial ischemia-reperfusion: implications for novel therapies. Annu Rev Pharmacol Toxicol 57:535–565

    Article  CAS  PubMed  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES et al (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91(4):479–489

    Article  CAS  PubMed  Google Scholar 

  • Li F, Hayashi T, Jin G, Deguchi K, Nagotani S, Nagano I et al (2005) The protective effect of dantrolene on ischemic neuronal cell death is associated with reduced expression of endoplasmic reticulum stress markers. Brain Res 1048(1–2):59–68

    Article  CAS  PubMed  Google Scholar 

  • Li CY, Li X, Liu SF, Qu WS, Wang W, Tian DS (2015a) Inhibition of mTOR pathway restrains astrocyte proliferation, migration and production of inflammatory mediators after oxygen-glucose deprivation and reoxygenation. Neurochem Int 83–84:9–18

    Article  PubMed  CAS  Google Scholar 

  • Li H, Xie Y, Zhang N, Yu Y, Zhang Q, Ding S (2015b) Disruption of IP3R2-mediated Ca2+ signaling pathway in astrocytes ameliorates neuronal death and brain damage while reducing behavioral deficits after focal ischemic stroke. Cell Calcium 58(6):565–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li LH, Tian XR, Hu ZP (2015c) The key target of neuroprotection after the onset of ischemic stroke: secretory pathway Ca(2+)-ATPase 1. Neural Regen Res 10(8):1271–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Li J, Qian J, Zhang D, Shen H, Li X, et al (2018) Loss of Ribosomal RACK1 (Receptor for Activated Protein Kinase C 1) Induced by Phosphorylation at T50 Alleviates Cerebral Ischemia-Reperfusion Injury in Rats. Stroke STROKEAHA118022404

  • Li J, Ahat E, Wang Y (2019) Golgi Structure and Function in Health, Stress, and Diseases. Results Probl Cell Differ 67:441–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao Y, Dong Y, Cheng J (2017a) The function of the mitochondrial calcium uniporter in neurodegenerative disorders. Int J Mol Sci 18(2):248

    Article  PubMed Central  CAS  Google Scholar 

  • Liao Y, Dong Y and Cheng J (2017b) The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders. Int J Mol Sci 18(2)

  • Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YW, Chen TY, Hung CY, Tai SH, Huang SY, Chang CC et al (2018) Melatonin protects brain against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress. Int J Mol Med 42(1):182–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CL, Ge P, Zhang F, Hu BR (2005) Co-translational protein aggregation after transient cerebral ischemia. Neuroscience 134(4):1273–1284

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Lu C, Wan R, Auyeung WW, Mattson MP (2002) Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release. J Cereb Blood Flow Metab 22(4):431–443

    Article  CAS  PubMed  Google Scholar 

  • Liu LX, Zhou XY, Li CS, Liu LQ, Huang SY, Zhou SN (2013) Selenoprotein S expression in the rat brain following focal cerebral ischemia. Neurol Sci 34(9):1671–1678

    Article  PubMed  Google Scholar 

  • Losey P, Ladds E, Laprais M, Guevel B, Burns L, Bordet R et al (2015) The role of PPAR activation during the systemic response to brain injury. J Neuroinflammation 12:99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Louessard M, Bardou I, Lemarchand E, Thiebaut AM, Parcq J, Leprince J et al (2017) Activation of cell surface GRP78 decreases endoplasmic reticulum stress and neuronal death. Cell Death Differ 24(9):1518–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe M (2011) Structural organization of the Golgi apparatus. Curr Opin Cell Biol 23(1):85–93

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Dong X, Zhang Z, Li W and Khoshnam SE (2020) Non-coding RNAs in Ischemic Stroke: Roles in the Neuroinflammation and Cell Death. Neurotoxicity Res 1–15

  • Lu M, Guo J, Wu B, Zhou Y, Wu M, Farzaneh M et al (2021) Mesenchymal Stem Cell-Mediated Mitochondrial Transfer: a Therapeutic Approach for Ischemic Stroke. Transl Stroke Res 12(2):212–229

    Article  PubMed  Google Scholar 

  • Lu T, Hu Z, Zeng L, Jiang Z (2013a) Changes in secretory pathway Ca(2+)-ATPase 2 following focal cerebral ischemia/reperfusion injury. Neural Regen Res 8(1):76–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W, Xu D, Tu R, Hu Z (2013b) Morphology of platelet Golgi apparatus and their significance after acute cerebral infarction. Neural Regen Res 8(23):2134–2143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz J, Thürmel K, Heemann U (2010) Anti-inflammatory treatment strategies for ischemia/reperfusion injury in transplantation. J Inflamm 7(1):27

    Article  CAS  Google Scholar 

  • Ma Y, Wang J, Wang Y, Yang G-Y (2017) The biphasic function of microglia in ischemic stroke. Prog Neurobiol 157:247–272

    Article  CAS  PubMed  Google Scholar 

  • Malone K, Amu S, Moore AC, Waeber C (2019) The immune system and stroke: from current targets to future therapy. Immunol Cell Biol 97(1):5–16

    Article  PubMed  Google Scholar 

  • Margariti A, Li H, Chen T, Martin D, Vizcay-Barrena G, Alam S et al (2013) XBP1 mRNA splicing triggers an autophagic response in endothelial cells through BECLIN-1 transcriptional activation. J Biol Chem 288(2):859–872

    Article  CAS  PubMed  Google Scholar 

  • Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell 10(2):417–426

    Article  CAS  PubMed  Google Scholar 

  • Matheoud D, Sugiura A, Bellemare-Pelletier A, Laplante A, Rondeau C, Chemali M et al (2016) Parkinson’s disease-related proteins PINK1 and Parkin repress mitochondrial antigen presentation. Cell 166(2):314–327

    Article  CAS  PubMed  Google Scholar 

  • Maurel M, Chevet E, Tavernier J, Gerlo S (2014) Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem Sci 39(5):245–254

    Article  CAS  PubMed  Google Scholar 

  • McCarron JG, Wilson C, Sandison ME, Olson ML, Girkin JM, Saunter C et al (2013) From structure to function: mitochondrial morphology, motion and shaping in vascular smooth muscle. J Vasc Res 50(5):357–371

    Article  PubMed  PubMed Central  Google Scholar 

  • McColl BW, Allan SM, Rothwell NJ (2009) Systemic infection, inflammation and acute ischemic stroke. Neuroscience 158(3):1049–1061

    Article  CAS  PubMed  Google Scholar 

  • Mehta MM, Weinberg SE, Chandel NS (2017) Mitochondrial control of immunity: beyond ATP. Nat Rev Immunol 17(10):608

    Article  CAS  PubMed  Google Scholar 

  • Micaroni M, Stanley AC, Khromykh T, Venturato J, Wong CXF, Lim JP et al (2013) Rab6a/a’ are important Golgi regulators of pro-inflammatory TNF secretion in macrophages. PLoS ONE 8(2):e57034–e57034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills EL, O’Neill LA (2016) Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur J Immunol 46(1):13–21

    Article  CAS  PubMed  Google Scholar 

  • Mintorovitch J, Yang GY, Shimizu H, Kucharczyk J, Chan PH, Weinstein PR (1994) Diffusion-weighted magnetic resonance imaging of acute focal cerebral ischemia: comparison of signal intensity with changes in brain water and Na+, K(+)-ATPase activity. J Cereb Blood Flow Metab 14(2):332–336

    Article  CAS  PubMed  Google Scholar 

  • Mo XY, Li T, Hu ZP (2013) Decreased levels of cell-division cycle 42 (Cdc42) protein in peripheral lymphocytes from ischaemic stroke patients are associated with Golgi apparatus function. J Int Med Res 41(3):642–653

    Article  CAS  PubMed  Google Scholar 

  • Montero M, Gonzalez B, Zimmer J (2009) Immunotoxic depletion of microglia in mouse hippocampal slice cultures enhances ischemia-like neurodegeneration. Brain Res 1291:140–152

    Article  CAS  PubMed  Google Scholar 

  • Morimoto N, Oida Y, Shimazawa M, Miura M, Kudo T, Imaizumi K et al (2007) Involvement of endoplasmic reticulum stress after middle cerebral artery occlusion in mice. Neuroscience 147(4):957–967

    Article  CAS  PubMed  Google Scholar 

  • Morizawa YM, Hirayama Y, Ohno N, Shibata S, Shigetomi E, Sui Y et al (2017) Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat Commun 8(1):28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67(2):181–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mraz F (1963) Strontium and Calcium Uptake by Rat Liver and Kidney Mitochondria. Hw-76000. HW-SA [reports].US At Energy Comm 86:95–97

    CAS  Google Scholar 

  • Murakami T, Ockinger J, Yu J, Byles V, McColl A, Hofer AM et al (2012) Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc Natl Acad Sci 109(28):11282–11287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy MP, Hartley RC (2018a) Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discovery 17(12):865–886

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP, Hartley RC (2018b) Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 17(12):865–886

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA et al (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403(6765):98–103

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H et al (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434(7033):652

    Article  CAS  PubMed  Google Scholar 

  • Nakahira K, Haspel JA, Rathinam VA, Lee S-J, Dolinay T, Lam HC et al (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12(3):222

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi H, Tominaga K, Amano T, Hirotsu I, Inoue T, Yamamoto K (1994) Age-Related Changes in Activities and Localizations of Cathepsins D, E, B, and L in the Rat Brain Tissues. Exp Neurol 126(1):119–128

    Article  CAS  PubMed  Google Scholar 

  • Nakayama R, Yano T, Ushijima K, Abe E, Terasaki H (2002) Effects of dantrolene on extracellular glutamate concentration and neuronal death in the rat hippocampal CA1 region subjected to transient ischemia. Anesthesiology 96(3):705–710

    Article  CAS  PubMed  Google Scholar 

  • Nakka VP, Gusain A, Raghubir R (2010) Endoplasmic reticulum stress plays critical role in brain damage after cerebral ischemia/reperfusion in rats. Neurotox Res 17(2):189–202

    Article  PubMed  Google Scholar 

  • Neher JJ, Emmrich JV, Fricker M, Mander PK, Théry C, Brown GC (2013) Phagocytosis executes delayed neuronal death after focal brain ischemia. Proc Natl Acad Sci U S A 110(43):E4098-4107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni J, Wu Z, Peterts C, Yamamoto K, Qing H, Nakanishi H (2015) The Critical Role of Proteolytic Relay through Cathepsins B and E in the Phenotypic Change of Microglia/Macrophage. J Neurosci 35(36):12488–12501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni Y, Gu WW, Liu ZH, Zhu YM, Rong JG, Kent TA et al (2018) RIP1K Contributes to Neuronal and Astrocytic Cell Death in Ischemic Stroke via Activating Autophagic-lysosomal Pathway. Neuroscience 371:60–74

    Article  CAS  PubMed  Google Scholar 

  • Nichols BJ and Denton RM (1995) Towards the molecular basis for the regulation of mitochondrial dehydrogenases by calcium ions. Signal Transduction Mechanisms, Springer 203-212

  • Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80(1):315–360

    Article  CAS  PubMed  Google Scholar 

  • Niizuma K, Endo H, Nito C, Myer DJ, Chan PH (2009) Potential role of PUMA in delayed death of hippocampal CA1 neurons after transient global cerebral ischemia. Stroke 40(2):618–625

    Article  CAS  PubMed  Google Scholar 

  • Niizuma K, Yoshioka H, Chen H, Kim GS, Jung JE, Katsu M et al (2010) Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta (BBA)-Mol Basis Dis 1802(1):92–99

    Article  CAS  Google Scholar 

  • Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K et al (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16(11):1345–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitatori T, Sato N, Waguri S, Karasawa Y, Araki H, Shibanai K et al (1995) Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci 15(2):1001–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nixon RA, Cataldo AM (1993) The lysosomal system in neuronal cell death: a review. Ann N Y Acad Sci 679:87–109

    Article  CAS  PubMed  Google Scholar 

  • Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148(6):1145–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouk T, Gautier S, Petrault M, Montaigne D, Marechal X, Masse I et al (2014) Effects of the PPAR-alpha agonist fenofibrate on acute and short-term consequences of brain ischemia. J Cereb Blood Flow Metab 34(3):542–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owen CR, Kumar R, Zhang P, McGrath BC, Cavener DR, Krause GS (2005) PERK is responsible for the increased phosphorylation of eIF2alpha and the severe inhibition of protein synthesis after transient global brain ischemia. J Neurochem 94(5):1235–1242

    Article  CAS  PubMed  Google Scholar 

  • Pan W, Kastin AJ (2007) Tumor necrosis factor and stroke: role of the blood–brain barrier. Prog Neurobiol 83(6):363–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsons JT, Churn SB, DeLorenzo RJ (1997) Ischemia-induced inhibition of calcium uptake into rat brain microsomes mediated by Mg2+/Ca2+ ATPase. J Neurochem 68(3):1124–1134

    Article  CAS  PubMed  Google Scholar 

  • Parsons JT, Churn SB, DeLorenzo RJ (1999) Global ischemia-induced inhibition of the coupling ratio of calcium uptake and ATP hydrolysis by rat whole brain microsomal Mg(2+)/Ca(2+) ATPase. Brain Res 834(1–2):32–41

    Article  CAS  PubMed  Google Scholar 

  • Paschen W, Aufenberg C, Hotop S, Mengesdorf T (2003) Transient cerebral ischemia activates processing of xbp1 messenger RNA indicative of endoplasmic reticulum stress. J Cereb Blood Flow Metab 23(4):449–461

    Article  CAS  PubMed  Google Scholar 

  • Pavlíková M, Tatarková Z, Sivonová M, Kaplan P, Krizanová O, Lehotský J (2009) Alterations induced by ischemic preconditioning on secretory pathways Ca2+-ATPase (SPCA) gene expression and oxidative damage after global cerebral ischemia/reperfusion in rats. Cell Mol Neurobiol 29(6–7):909–916

    Article  PubMed  CAS  Google Scholar 

  • Peters O, Back T, Lindauer U, Busch C, Megow D, Dreier J et al (1998) Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 18(2):196–205

    Article  CAS  PubMed  Google Scholar 

  • Picard M, Csukly K, Robillard M-E, Godin R, Ascah A, Bourcier-Lucas C et al (2008) Resistance to Ca2+-induced opening of the permeability transition pore differs in mitochondria from glycolytic and oxidative muscles. Am J Physiol Regul Integr Comp Physiol 295(2):R659–R668

    Article  CAS  PubMed  Google Scholar 

  • Planas AM, Gómez-Choco M, Urra X, Gorina R, Caballero M, Chamorro Á (2012) Brain-derived antigens in lymphoid tissue of patients with acute stroke. J Immunol 188(5):2156–2163

    Article  CAS  PubMed  Google Scholar 

  • Plesnila N, Zhu C, Culmsee C, Gröger M, Moskowitz MA, Blomgren K (2004) Nuclear translocation of apoptosis-inducing factor after focal cerebral ischemia. J Cereb Blood Flow Metab 24(4):458–466

    Article  PubMed  Google Scholar 

  • Poddar D, Basu A, Baldwin WM, 3rd, Kondratov RV, Barik S and Mazumder B (2013) An extraribosomal function of ribosomal protein L13a in macrophages resolves inflammation. J Immunol 190(7):3600-3612

  • Puyal J, Vaslin A, Mottier V, Clarke PG (2009) Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann Neurol 66(3):378–389

    Article  CAS  PubMed  Google Scholar 

  • Qin AP, Liu CF, Qin YY, Hong LZ, Xu M, Yang L et al (2010) Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia. Autophagy 6(6):738–753

    Article  CAS  PubMed  Google Scholar 

  • Qin C, Zhou LQ, Ma XT, Hu ZW, Yang S, Chen M et al (2019) Dual Functions of Microglia in Ischemic Stroke. Neurosci Bull 35(5):921–933

    Article  PubMed  PubMed Central  Google Scholar 

  • Rafols JA, Daya AM, O’Neil BJ, Krause GS, Neumar RW, White BC (1995) Global brain ischemia and reperfusion: Golgi apparatus ultrastructure in neurons selectively vulnerable to death. Acta Neuropathol 90(1):17–30

    Article  CAS  PubMed  Google Scholar 

  • Rami A, Bechmann I, Stehle JH (2008) Exploiting endogenous anti-apoptotic proteins for novel therapeutic strategies in cerebral ischemia. Prog Neurobiol 85(3):273–296

    Article  CAS  PubMed  Google Scholar 

  • Ran R, Pan R, Lu A, Xu H, Davis RR, Sharp FR (2007) A novel 165-kDa Golgin protein induced by brain ischemia and phosphorylated by Akt protects against apoptosis. Mol Cell Neurosci 36(3):392–407

    Article  CAS  PubMed  Google Scholar 

  • Rasola A, Bernardi P (2007) The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 12(5):815–833

    Article  CAS  PubMed  Google Scholar 

  • Rasola A, Bernardi P (2011) Mitochondrial permeability transition in Ca2+-dependent apoptosis and necrosis. Cell Calcium 50(3):222–233

    Article  CAS  PubMed  Google Scholar 

  • Reddish FN, Miller CL, Gorkhali R, Yang JJ (2017) Calcium Dynamics Mediated by the Endoplasmic/Sarcoplasmic Reticulum and Related Diseases. Int J Mol Sci 18(5):1024

    Article  PubMed Central  CAS  Google Scholar 

  • Ricote M, Glass CK (2007) PPARs and molecular mechanisms of transrepression. Biochem Biophys Acta 1771(8):926–935

    CAS  PubMed  Google Scholar 

  • Rissanen A, Sivenius J, Jolkkonen J (2006) Prolonged bihemispheric alterations in unfolded protein response related gene expression after experimental stroke. Brain Res 1087(1):60–66

    Article  CAS  PubMed  Google Scholar 

  • Ryan F, Khodagholi F, Dargahi L, Minai-Tehrani D, Ahmadiani A (2018) Temporal Pattern and Crosstalk of Necroptosis Markers with Autophagy and Apoptosis Associated Proteins in Ischemic Hippocampus. Neurotox Res 34(1):79–92

    Article  CAS  PubMed  Google Scholar 

  • Saelens X, Festjens N, Walle LV, Van Gurp M, Van Loo G, Vandenabeele P (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23(16):2861

    Article  CAS  PubMed  Google Scholar 

  • Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10(9):623–635

    Article  CAS  PubMed  Google Scholar 

  • Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Hüttemann M (2013) Molecular mechanisms of ischemia–reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 47(1):9–23

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, Yoshida H (2019) Golgi stress response and organelle zones. FEBS Lett 593(17):2330–2340

    Article  CAS  PubMed  Google Scholar 

  • Saver JL (2006) Time is brain–quantified. Stroke 37(1):263–266

    Article  PubMed  Google Scholar 

  • Scherer NM, Deamer DW (1986) Oxidative stress impairs the function of sarcoplasmic reticulum by oxidation of sulfhydryl groups in the Ca2+-ATPase. Arch Biochem Biophys 246(2):589–601

    Article  CAS  PubMed  Google Scholar 

  • Schieven GL (2005) The biology of p38 kinase: a central role in inflammation. Curr Top Med Chem 5(10):921–928

    Article  CAS  PubMed  Google Scholar 

  • Schilling M, Besselmann M, Müller M, Strecker JK, Ringelstein EB, Kiefer R (2005) Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: an investigation using green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 196(2):290–297

    Article  CAS  PubMed  Google Scholar 

  • Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J et al (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci 102(34):12005–12010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrader M, Fahimi HD (2006a) Growth and division of peroxisomes. Int Rev Cytol 255:237–290

    Article  CAS  PubMed  Google Scholar 

  • Schrader M, Fahimi HD (2006b) Peroxisomes and oxidative stress. Biochim Biophys Acta 1763(12):1755–1766

    Article  CAS  PubMed  Google Scholar 

  • Schroder K, Tschopp J (2010a) The Inflammasomes Cell 140(6):821–832

    Article  CAS  PubMed  Google Scholar 

  • Schroder K, Tschopp J (2010b) The inflammasomes. Cell 140(6):821–832

    Article  CAS  PubMed  Google Scholar 

  • Schuck S, Prinz WA, Thorn KS, Voss C, Walter P (2009) Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J Cell Biol 187(4):525–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz DS, Blower MD (2016) The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci 73(1):79–94

    Article  CAS  PubMed  Google Scholar 

  • Sekine S, Miura M, Chihara T (2009) Organelles in developing neurons: essential regulators of neuronal morphogenesis and function. Int J Dev Biol 53(1):19–27

    Article  PubMed  Google Scholar 

  • Seyfried D, Han Y, Zheng Z, Day N, Moin K, Rempel S et al (1997) Cathepsin B and middle cerebral artery occlusion in the rat. J Neurosurg 87(5):716–723

    Article  CAS  PubMed  Google Scholar 

  • Shao ZQ, Liu ZJ (2015) Neuroinflammation and neuronal autophagic death were suppressed via Rosiglitazone treatment: New evidence on neuroprotection in a rat model of global cerebral ischemia. J Neurol Sci 349(1–2):65–71

    Article  CAS  PubMed  Google Scholar 

  • Shehata AHF, Ahmed AF, Abdelrehim AB and Heeba GH (2020) The impact of single and combined PPAR-α and PPAR-γ activation on the neurological outcomes following cerebral ischemia reperfusion. Life Sci 252:117679

  • Sheng R, Liu XQ, Zhang LS, Gao B, Han R, Wu YQ et al (2012) Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. Autophagy 8(3):310–325

    Article  CAS  PubMed  Google Scholar 

  • Shibata M, Hisahara S, Hara H, Yamawaki T, Fukuuchi Y, Yuan J et al (2000) Caspases determine the vulnerability of oligodendrocytes in the ischemic brain. J Clin Invest 106(5):643–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shichita T, Ago T, Kamouchi M, Kitazono T, Yoshimura A, Ooboshi H (2012) Novel therapeutic strategies targeting innate immune responses and early inflammation after stroke. J Neurochem 123(Suppl 2):29–38

    Article  CAS  PubMed  Google Scholar 

  • Slomnicki LP, Pietrzak M, Vashishta A, Jones J, Lynch N, Elliot S et al (2016) Requirement of Neuronal Ribosome Synthesis for Growth and Maintenance of the Dendritic Tree. J Biol Chem 291(11):5721–5739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song YS, Lee Y-S, Narasimhan P, Chan PH (2007) Reduced oxidative stress promotes NF-κB-mediated neuroprotective gene expression after transient focal cerebral ischemia: lymphocytotrophic cytokines and antiapoptotic factors. J Cereb Blood Flow Metab 27(4):764–775

    Article  CAS  PubMed  Google Scholar 

  • Song J, Kim YS, Lee DH, Lee SH, Park HJ, Lee D et al (2019) Neuroprotective effects of oleic acid in rodent models of cerebral ischaemia. Sci Rep 9(1):10732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sorrentino V, Menzies KJ, Auwerx J (2018) Repairing mitochondrial dysfunction in disease. Annu Rev Pharmacol Toxicol 58:353–389

    Article  CAS  PubMed  Google Scholar 

  • Srivastava IN, Shperdheja J, Baybis M, Ferguson T, Crino PB (2016) mTOR pathway inhibition prevents neuroinflammation and neuronal death in a mouse model of cerebral palsy. Neurobiol Dis 85:144–154

    Article  CAS  PubMed  Google Scholar 

  • Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in Health and Disease. Nature 481(7381):278–286

    Article  CAS  PubMed  Google Scholar 

  • Subramanian N, Natarajan K, Clatworthy MR, Wang Z, Germain RN (2013) The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell 153(2):348–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun MS, Jin H, Sun X, Huang S, Zhang FL, Guo ZN et al (2018) Free Radical Damage in Ischemia-Reperfusion Injury: An Obstacle in Acute Ischemic Stroke after Revascularization Therapy. Oxid Med Cell Longev 2018:3804979

    Article  PubMed  PubMed Central  Google Scholar 

  • Sundararajan S, Gamboa JL, Victor NA, Wanderi EW, Lust WD, Landreth GE (2005) Peroxisome proliferator-activated receptor-gamma ligands reduce inflammation and infarction size in transient focal ischemia. Neuroscience 130(3):685–696

    Article  CAS  PubMed  Google Scholar 

  • Suomalainen A, Battersby BJ (2018) Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat Rev Mol Cell Biol 19(2):77

    Article  CAS  PubMed  Google Scholar 

  • Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T (2018) Bidirectional Microglia-Neuron Communication in Health and Disease. Front Cell Neurosci 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szydlowska K, Tymianski M (2010) Calcium, ischemia and excitotoxicity. Cell Calcium 47(2):122–129

    Article  CAS  PubMed  Google Scholar 

  • Tam AB, Mercado EL, Hoffmann A, Niwa M (2012) ER stress activates NF-κB by integrating functions of basal IKK activity, IRE1 and PERK. PLoS ONE 7(10):e45078–e45078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Z, Gan Y, Liu Q, Yin J-X, Liu Q, Shi J et al (2014) CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke. J Neuroinflammation 11(1):26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao J, Liu W, Shang G, Zheng Y, Huang J, Lin R et al (2015) MiR-207/352 regulate lysosomal-associated membrane proteins and enzymes following ischemic stroke. Neuroscience 305:1–14

    Article  CAS  PubMed  Google Scholar 

  • Thakkar R, Wang R, Sareddy G, Wang J, Thiruvaiyaru D, Vadlamudi R et al (2016) NLRP3 Inflammasome Activation in the Brain after Global Cerebral Ischemia and Regulation by 17β-Estradiol. Oxid Med Cell Longev 2016:8309031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thornton P, Pinteaux E, Allan SM, Rothwell NJ (2008) Matrix metalloproteinase-9 and urokinase plasminogen activator mediate interleukin-1-induced neurotoxicity. Mol Cell Neurosci 37(1):135–142

    Article  CAS  PubMed  Google Scholar 

  • Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K, Takeda K et al (2001) ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2(3):222–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troncoso M, Bannoud N, Carvelli L, Asensio J, Seltzer A and Sosa MA (2018) Hypoxia-ischemia alters distribution of lysosomal proteins in rat cortex and hippocampus. Biol Open 7(10)

  • Tsang KY, Chan D, Bateman JF, Cheah KS (2010) In vivo cellular adaptation to ER stress: survival strategies with double-edged consequences. J Cell Sci 123(Pt 13):2145–2154

    Article  CAS  PubMed  Google Scholar 

  • Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL et al (2017) Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry 22(11):1520–1530

    Article  CAS  PubMed  Google Scholar 

  • Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B et al (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta 1824(1):68–88

    Article  CAS  PubMed  Google Scholar 

  • Unal-Cevik I, Kilinc M, Can A, Gursoy-Ozdemir Y, Dalkara T (2004) Apoptotic and necrotic death mechanisms are concomitantly activated in the same cell after cerebral ischemia. Stroke 35(9):2189–2194

    Article  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84

    Article  CAS  PubMed  Google Scholar 

  • Vasington FD (1963) Ca++ uptake by fragments of rat liver mitochondria and its dependence on electron transport. J Biol Chem 238(5):1841–1847

    Article  CAS  PubMed  Google Scholar 

  • Viner RI, Hühmer AF, Bigelow DJ, Schöneich C (1996) The oxidative inactivation of sarcoplasmic reticulum Ca(2+)-ATPase by peroxynitrite. Free Radic Res 24(4):243–259

    Article  CAS  PubMed  Google Scholar 

  • Wallace DC, Fan W, Procaccio V (2010) Mitochondrial energetics and therapeutics. Annu Rev Pathol 5:297–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh JG, Muruve DA, Power C (2014) Inflammasomes in the CNS. Nat Rev Neurosci 15(2):84–97

    Article  CAS  PubMed  Google Scholar 

  • Walter KM, Schonenberger MJ, Trotzmuller M, Horn M, Elsasser HP, Moser AB et al (2014) Hif-2alpha promotes degradation of mammalian peroxisomes by selective autophagy. Cell Metab 20(5):882–897

    Article  CAS  PubMed  Google Scholar 

  • Wang JY, Xia Q, Chu KT, Pan J, Sun LN, Zeng B et al (2011) Severe global cerebral ischemia-induced programmed necrosis of hippocampal CA1 neurons in rat is prevented by 3-methyladenine: a widely used inhibitor of autophagy. J Neuropathol Exp Neurol 70(4):314–322

    Article  CAS  PubMed  Google Scholar 

  • Wang YC, Li X, Shen Y, Lyu J, Sheng H, Paschen W et al (2020) PERK (Protein Kinase RNA-Like ER Kinase) Branch of the Unfolded Protein Response Confers Neuroprotection in Ischemic Stroke by Suppressing Protein Synthesis. Stroke 51(5):1570–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster KA, Graham RM, Thompson JW, Spiga M-G, Frazier DP, Wilson A et al (2006) Redox stress and the contributions of BH3-only proteins to infarction. Antioxid Redox Signal 8(9–10):1667–1676

    Article  CAS  PubMed  Google Scholar 

  • Wek RC, Cavener DR (2007) Translational control and the unfolded protein response. Antioxid Redox Signal 9(12):2357–2371

    Article  CAS  PubMed  Google Scholar 

  • Wen Y-D, Zhang H-L, Qin Z-H (2006) Inflammatory mechanism in ischemic neuronal injury. Neurosci Bull 22(3):171–182

    CAS  PubMed  Google Scholar 

  • Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD et al (2008) Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 4(6):762–769

    Article  CAS  PubMed  Google Scholar 

  • Wen M, Jin Y, Zhang H, Sun X, Kuai Y, Tan W (2019) Proteomic Analysis of Rat Cerebral Cortex in the Subacute to Long-Term Phases of Focal Cerebral Ischemia-Reperfusion Injury. J Proteome Res 18(8):3099–3118

    Article  CAS  PubMed  Google Scholar 

  • Wendt W, Zhu XR, Lubbert H, Stichel CC (2007) Differential expression of cathepsin X in aging and pathological central nervous system of mice. Exp Neurol 204(2):525–540

    Article  CAS  PubMed  Google Scholar 

  • Wendt W, Lubbert H, Stichel CC (2008) Upregulation of cathepsin S in the aging and pathological nervous system of mice. Brain Res 1232:7–20

    Article  CAS  PubMed  Google Scholar 

  • Wilson C, Venditti R, Rega LR, Colanzi A, D’Angelo G, De Matteis MA (2011) The Golgi apparatus: an organelle with multiple complex functions. Biochem J 433(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Windelborn JA, Lipton P (2008) Lysosomal release of cathepsins causes ischemic damage in the rat hippocampal slice and depends on NMDA-mediated calcium influx, arachidonic acid metabolism, and free radical production. J Neurochem 106(1):56–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo MS, Yang J, Beltran C, Cho S (2016) Cell Surface CD36 Protein in Monocyte/Macrophage Contributes to Phagocytosis during the Resolution Phase of Ischemic Stroke in Mice. J Biol Chem 291(45):23654–23661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CX, Liu R, Gao M, Zhao G, Wu S, Wu CF et al (2013) Pinocembrin protects brain against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress induced apoptosis. Neurosci Lett 546:57–62

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Yang L, Rong JG, Ni Y, Gu WW, Luo Y et al (2014) Inhibition of cysteine cathepsin B and L activation in astrocytes contributes to neuroprotection against cerebral ischemia via blocking the tBid-mitochondrial apoptotic signaling pathway. Glia 62(6):855–880

    Article  PubMed  Google Scholar 

  • Xu Y, Wang J, Song X, Wei R, He F, Peng G et al (2016) Protective mechanisms of CA074-me (other than cathepsin-B inhibition) against programmed necrosis induced by global cerebral ischemia/reperfusion injury in rats. Brain Res Bull 120:97–105

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Lu J, Shao A, Zhang JH, Zhang J (2020) Glial Cells: Role of the Immune Response in Ischemic Stroke. Front Immunol 11:294–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xuan AG, Chen Y, Long DH, Zhang M, Ji WD, Zhang WJ et al (2015) PPARalpha Agonist Fenofibrate Ameliorates Learning and Memory Deficits in Rats Following Global Cerebral Ischemia. Mol Neurobiol 52(1):601–609

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki Y, Matsuura N, Shozuhara H, Onodera H, Itoyama Y and Kogure K (1995) Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke 26(4):676–680. discussion 681

  • Yamashima T, Saido TC, Takita M, Miyazawa A, Yamano J, Miyakawa A et al (1996) Transient brain ischaemia provokes Ca2+, PIP2 and calpain responses prior to delayed neuronal death in monkeys. Eur J Neurosci 8(9):1932–1944

    Article  CAS  PubMed  Google Scholar 

  • Yamashima T, Kohda Y, Tsuchiya K, Ueno T, Yamashita J, Yoshioka T et al (1998) Inhibition of ischaemic hippocampal neuronal death in primates with cathepsin B inhibitor CA-074: a novel strategy for neuroprotection based on “calpain-cathepsin hypothesis.” Eur J Neurosci 10(5):1723–1733

    Article  CAS  PubMed  Google Scholar 

  • Yamashima T, Tonchev AB, Tsukada T, Saido TC, Imajoh-Ohmi S, Momoi T et al (2003) Sustained calpain activation associated with lysosomal rupture executes necrosis of the postischemic CA1 neurons in primates. Hippocampus 13(7):791–800

    Article  CAS  PubMed  Google Scholar 

  • Yang J-L, Mukda S, Chen S-D (2018) Diverse roles of mitochondria in ischemic stroke. Redox Biol 16:263–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao H, Gu XQ, Douglas RM, Haddad GG (2001) Role of Na(+)/H(+) exchanger during O(2) deprivation in mouse CA1 neurons. Am J Physiol Cell Physiol 281(4):C1205-1210

    Article  CAS  PubMed  Google Scholar 

  • Ye S-Y, Apple JE, Ren X, Tang F-L, Yao L-L, Wang Y-G et al (2019) Microglial VPS35 deficiency regulates microglial polarization and decreases ischemic stroke-induced damage in the cortex. J Neuroinflammation 16(1):235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yenari MA, Kauppinen TM, Swanson RA (2010) Microglial activation in stroke: therapeutic targets. Neurotherapeutics 7(4):378–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin K-J, Deng Z, Hamblin M, Xiang Y, Huang H, Zhang J et al (2010) Peroxisome proliferator-activated receptor delta regulation of miR-15a in ischemia-induced cerebral vascular endothelial injury. J Neurosci 30(18):6398–6408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin B, Xu Y, Wei RL, He F, Luo BY, Wang JY (2015) Inhibition of receptor-interacting protein 3 upregulation and nuclear translocation involved in Necrostatin-1 protection against hippocampal neuronal programmed necrosis induced by ischemia/reperfusion injury. Brain Res 1609:63–71

    Article  CAS  PubMed  Google Scholar 

  • Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayama T et al (2001) Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 276(17):13935–13940

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Kong Y-Y, Yoshida R, Elia AJ, Hakem A, Hakem R et al (1998) Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94(6):739–750

    Article  CAS  PubMed  Google Scholar 

  • Young JM, Nelson JW, Cheng J, Zhang W, Mader S, Davis CM et al (2015) Peroxisomal biogenesis in ischemic brain. Antioxid Redox Signal 22(2):109–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Sheng H, Liu S, Zhao S, Glembotski CC, Warner DS et al (2017) Activation of the ATF6 branch of the unfolded protein response in neurons improves stroke outcome. J Cereb Blood Flow Metab 37(3):1069–1079

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Cai M, Li X, Zhang J, Wu T, Yang F et al (2018) Neuroprotective effects of Tongxinluo on focal cerebral ischemia and reperfusion injury in rats associated with the activation of the MEK1/2/ERK1/2/p90RSK signaling pathway. Brain Res 1685:9–18

    Article  CAS  PubMed  Google Scholar 

  • Yuan D, Liu C, Hu B (2018a) Dysfunction of Membrane Trafficking Leads to Ischemia-Reperfusion Injury After Transient Cerebral Ischemia. Transl Stroke Res 9(3):215–222

    Article  CAS  PubMed  Google Scholar 

  • Yuan D, Liu C, Wu J, Hu B (2018b) Inactivation of NSF ATPase Leads to Cathepsin B Release After Transient Cerebral Ischemia. Transl Stroke Res 9(3):201–213

    Article  CAS  PubMed  Google Scholar 

  • Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG et al (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32(18):6391–6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Liu CL, Hu BR (2006) Irreversible aggregation of protein synthesis machinery after focal brain ischemia. J Neurochem 98(1):102–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HL, Xu M, Wei C, Qin AP, Liu CF, Hong LZ et al (2011) Neuroprotective effects of pioglitazone in a rat model of permanent focal cerebral ischemia are associated with peroxisome proliferator-activated receptor gamma-mediated suppression of nuclear factor-κB signaling pathway. Neuroscience 176:381–395

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yan H, Yuan Y, Gao J, Shen Z, Cheng Y et al (2013) Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy 9(9):1321–1333

    Article  CAS  PubMed  Google Scholar 

  • Zhang HY, Wang ZG, Lu XH, Kong XX, Wu FZ, Lin L et al (2015) Endoplasmic reticulum stress: relevance and therapeutics in central nervous system diseases. Mol Neurobiol 51(3):1343–1352

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Tan J, Hu Z, Chen C, Zeng L (2019) HDAC6 Inhibition Protects against OGDR-Induced Golgi Fragmentation and Apoptosis. Oxid Med Cell Longev 2019:6507537

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Li M, Li X, Zhang H, Wang L, Wu X et al (2020) Catalytically inactive RIP1 and RIP3 deficiency protect against acute ischemic stroke by inhibiting necroptosis and neuroinflammation. Cell Death Dis 11(7):565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Yenari MA, Cheng D, Sapolsky RM, Steinberg GK (2003) Bcl-2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase-3 activity. J Neurochem 85(4):1026–1036

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Patzer A, Herdegen T, Gohlke P, Culman J (2006) Activation of cerebral peroxisome proliferator-activated receptors gamma promotes neuroprotection by attenuation of neuronal cyclooxygenase-2 overexpression after focal cerebral ischemia in rats. Faseb j 20(8):1162–1175

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Mou Y, Bernstock JD, Klimanis D, Wang S, Spatz M et al (2015) Synthetic oligodeoxynucleotides containing multiple telemeric TTAGGG motifs suppress inflammasome activity in macrophages subjected to oxygen and glucose deprivation and reduce ischemic brain injury in stroke-prone spontaneously hypertensive rats. PLoS ONE 10(10):e0140772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11(2):136

    Article  CAS  PubMed  Google Scholar 

  • Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329):221

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Yang L, Ma A, Zhang X, Li W, Yang W et al (2012) Orally administered oleoylethanolamide protects mice from focal cerebral ischemic injury by activating peroxisome proliferator-activated receptor alpha. Neuropharmacology 63(2):242–249

    Article  CAS  PubMed  Google Scholar 

  • Zhou XY, Luo Y, Zhu YM, Liu ZH, Kent TA, Rong JG et al (2017) Inhibition of autophagy blocks cathepsins-tBid-mitochondrial apoptotic signaling pathway via stabilization of lysosomal membrane in ischemic astrocytes. Cell Death Dis 8(2):e2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Yu J, Gong J, Shen J, Ye D, Cheng D et al (2021) PTP1B inhibitor alleviates deleterious microglial activation and neuronal injury after ischemic stroke by modulating the ER stress-autophagy axis via PERK signaling in microglia. Aging (albany NY) 13(3):3405–3427

    Article  CAS  Google Scholar 

  • Zuo H, Henzel WJ, Liu X, Lutshg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c–dependent activation of caspase-3. Cell 90(3):405–413

    Article  Google Scholar 

  • Zuo X, Hou Q, Jin J, Zhan L, Li X, Sun W et al (2016) Inhibition of Cathepsin B Alleviates Secondary Degeneration in Ipsilateral Thalamus After Focal Cerebral Infarction in Adult Rats. J Neuropathol Exp Neurol 75(9):816–826

    Article  CAS  PubMed  Google Scholar 

  • Zuo X, Hou Q, Jin J, Chen X, Zhan L, Tang Y et al (2018) Inhibition of Cathepsins B Induces Neuroprotection Against Secondary Degeneration in Ipsilateral Substantia Nigra After Focal Cortical Infarction in Adult Male Rats. Front Aging Neurosci 10:125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zussman B, Weiner G, Ducruet A (2018) Mitochondrial transfer into the cerebrospinal fluid in the setting of subarachnoid hemorrhage. Neurosurgery 82(1):N11–N13

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Tehran University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

FK, FR and GA designed the outline of the manuscript. GA, SEK and FR drafted the manuscript. AH and FK revised the work. FR and SEK prepared the figures.

Corresponding authors

Correspondence to Ghorbangol Ashabi or Abolhassan Ahmadiani.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryan, F., Khoshnam, S.E., Khodagholi, F. et al. How cytosolic compartments play safeguard functions against neuroinflammation and cell death in cerebral ischemia. Metab Brain Dis 36, 1445–1467 (2021). https://doi.org/10.1007/s11011-021-00770-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-021-00770-z

Keywords

Navigation