Skip to main content

Advertisement

Log in

Inactivation of NSF ATPase Leads to Cathepsin B Release After Transient Cerebral Ischemia

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

A Correction to this article was published on 23 May 2018

This article has been updated

Abstract

Neurons have extraordinary large cell membrane surface area, thus requiring extremely high levels of intracellular membrane-trafficking activities. Consequently, defects in the membrane-trafficking activities preferentially affect neurons. A critical molecule for controlling the membrane-trafficking activities is the N-ethylmaleimide-sensitive factor (NSF) ATPase. This study is to investigate the cascade of events of NSF ATPase inactivation, resulting in a massive buildup of late endosomes (LEs) and fatal release of cathepsin B (CTSB) after transient cerebral ischemia using the 2-vessel occlusion with hypotension (2VO+Hypotension) global brain ischemia model. Rats were subjected to 20 min of transient cerebral ischemia followed by 0.5, 4, 24, and 72 h of reperfusion. Neuronal histopathology and ultrastructure were examined by the light and electron microscopy, respectively. Western blotting and confocal microscopy were utilized for analyzing the levels, redistribution, and co-localization of Golgi apparatus and endosome or lysosome markers. Transient cerebral ischemia leads to delayed neuronal death that occurs at 48–72 h of reperfusion mainly in hippocampal CA1 and neocortical (Cx) layers 3 and 5 pyramidal neurons. During the delayed period, NSF ATPase is irreversibly trapped into inactive protein aggregates selectively in post-ischemic neurons destined to die. NSF inactivation leads to a massive buildup of Golgi fragments, transport vesicles (TVs) and late endosomes (LEs), and release of the 33 kDa LE type of CTSB, which is followed by delayed neuronal death after transient cerebral ischemia. The results support a novel hypothesis that transient cerebral ischemia leads to NSF inactivation, resulting in a cascade of events of fatal release of CTSB and delayed neuronal death after transient cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7.

Similar content being viewed by others

Change history

  • 23 May 2018

    The author name “Dr. Jiang Wu” needed to be added as the 3rd author. The author institutional affiliations are correspondingly adjusted. The authors regret these errors.

    The original article has been corrected.

Abbreviations

NSF:

N-ethylmaleimide sensitive factor ATPase

SNAREs:

Soluble NSF attachment protein receptors

SNAP:

Soluble NSF attachment protein

CTSB:

Cathepsin B

TVs:

Transport vesicles

LE:

Late endosome

EL:

Endolysosome

L:

Lysosome

MOMP:

Mitochondrial outer membrane permeabilization

IRI:

Ischemia-reperfusion injury

DG:

Dentate gyrus

EM:

Electron microscopy

Vti1b:

Vesicle transport through interaction with t-SNAREs homolog 1B

TGN38:

Trans-Golgi network membrane protein 38 kDa

References

  1. Smith ML, Auer RN, Siesjo BK. The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol (Berl). 1984;64:319–32.

    Article  CAS  Google Scholar 

  2. Wang W, Redecker C, Bidmon HJ, Witte OW. Delayed neuronal death and damage of GDNF family receptors in CA1 following focal cerebral ischemia. Brain Res. 2004;1023:92–101.

    Article  PubMed  CAS  Google Scholar 

  3. Horn M, Schlote W. Delayed neuronal death and delayed neuronal recovery in the human brain following global ischemia. Acta Neuropathol. 1992;85:79–87.

    Article  PubMed  CAS  Google Scholar 

  4. Kirino T, Sano K. Fine structural nature of delayed neuronal death following ischemia in the gerbil hippocampus. Acta Neuropathol. 1984;62:209–18.

    Article  PubMed  CAS  Google Scholar 

  5. Hu BR, Martone ME, Jones YZ, Liu CL. Protein aggregation after transient cerebral ischemia. The Journal of Neuroscience. 2000;20:3191–1999.

    Article  PubMed  CAS  Google Scholar 

  6. Hu BR, Janelidze S, Ginsberg MD, Busto R, Perez-Pinzon M, Sick TJ, et al. Protein aggregation after focal brain ischemia and reperfusion. J Cereb Blood Flow Metab. 2001;21:865–75.

    Article  PubMed  CAS  Google Scholar 

  7. Liu CL, Ge P, Zhang F, Hu BR. Co-translational protein aggregation after transient cerebral ischemia. Neurosci. 2005;134:1273–84.

  8. Zhang F, Liu CL, Hu BR. Irreversible aggregation of protein synthesis machinery after focal brain ischemia. J Neurochem. 2005;98:102–12.

    Article  CAS  Google Scholar 

  9. Wang D, Chan CC, Cherry S, Hiesinger PR. Membrane trafficking in neuronal maintenance and degeneration. Cell Mol Life Sci. 2013;70(16):2919–34.

    Article  PubMed  CAS  Google Scholar 

  10. Yuan D, Liu C, Hu B. Dysfunction of membrane trafficking leads to CTSB release and brain ischemia-reperfusion injury. Transl Stroke Res. 2017; in press.

  11. Morgan A, Burgoyne RD. Is NSF a fusion protein? Trends Cell Biol. 1995;5:335–9.

    Article  PubMed  CAS  Google Scholar 

  12. Mohtashami M, Stewart BA, Boulianne GL, Trimble WS. Analysis of the mutant Drosophila N-ethylmaleimide sensitive fusion-1 protein in comatose reveals molecular correlates of the behaviouralparalysis. J Neurochem. 2001;77:1407–17.

    Article  PubMed  CAS  Google Scholar 

  13. Robinson LJ, Aniento F, Gruenberg J. NSF is required for transport from early to late endosomes. J Cell Sci. 1997;110:2079–87.

    PubMed  CAS  Google Scholar 

  14. Dalal S, Rosser MFN, Cyr DM, Hanson PI. Distinct Roles for the AAA ATPases NSF and p97 in the Secretory Pathway. Glick B, ed. Mol Biol Cell. 2004;15(2):637–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Offenhauser C, Lei N, Roy S, Collins BM, Stow JL, Murray RZ. Syntaxin 11 binds Vti1b and regulates late endosome to lysosome fusion in macrophages. Traffic. 2011;12:762–73.

    Article  PubMed  CAS  Google Scholar 

  16. Luzio JP, Gray SR, Bright NA. Endosome-lysosome fusion. Biochem Soc Trans. 2010;38:1413–6.

    Article  PubMed  CAS  Google Scholar 

  17. Kunwar AJ, Rickmann M, Backofen B, Browski SM, Rosenbusch J, Schöning S, et al. Lack of the endosomal SNAREs vti1a and vti1b led to significant impairments in neuronal development. PNAS U S A. 2011;108:2575–80.

    Article  Google Scholar 

  18. Ponten U, Ratcheson RA, Salford L, Siesjö BK. Optimal freezing conditions for cerebral metabolites in rats. J. Neurochem. 1973;21:1127–38.

    Article  PubMed  CAS  Google Scholar 

  19. Luo T, Roman P, Liu C, Sun X, Park Y, Hu B. Upregulation of the GEF-H1 Pathway after Transient Cerebral Ischemia. Experimental neurology. 2015;263:306–13.

    Article  PubMed  CAS  Google Scholar 

  20. Brunger AT. Structure of proteins involved in synaptic vesicle fusion in neurons. Annu Rev. Biophys Biomol Struct. 2001;30:157–1571.

    Article  PubMed  CAS  Google Scholar 

  21. Malhotra V, Orci L, Glick BS, Block MR, Rothman JE. Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack. Cell. 1988;54:221–7.

    Article  PubMed  CAS  Google Scholar 

  22. May AP, Whiteheart SW, Weis WI. Unraveling the mechanism of the vesicle transport ATPase NSF, the N-ethylmaleimide-sensitive factor. J Biol Chem. 2001;276:21,991–4.

    Article  CAS  Google Scholar 

  23. Whiteheart SW, Matveeva EA. Multiple binding proteins suggest diverse functions for the N-ethylmaleimide sensitive factor. J Struct Biol. 2004;146:32–43.

    Article  PubMed  CAS  Google Scholar 

  24. Brandon E, Szul T, Alvarez C, Grabski R, Benjamin R, Kawai R, et al. On and off membrane dynamics of the endoplasmic reticulum-golgi tethering factor p115 in vivo. Mol Biol Cell. 2006;17:2996–3008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Liu CL, Hu BR. Alterations of N-Ethylmaleimide-Sensitive ATPase Following Transient Cerebral Ischemia. Neuroscience. 2004;128:767–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Antón-Fernández A, Aparicio-Torres G, Tapia S, DeFelipe J, Muñoz A. Morphometric alterations of Golgi apparatus in Alzheimer’s disease are related to tau hyperphosphorylation. Neurobiol Dis. 2017;97(Pt A):11–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, et al. Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta. 1824;2012:68–88.

    Google Scholar 

  28. Huotari J, Helenius A. Endosome maturation. EMBO J. 2011;30:3481–500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Pungercar JR, Caglic D, Sajid M, Dolinar M, Vasiljeva O, Pozgan U, et al. Autocatalytic processing of procathepsin B is triggered by proenzyme activity. The FEBS journal. 2009;276:660–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Block MR, Glick BS, Wilcox CA, Wieland FT, Rothman JE. Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. Proc Natl Acad Sci U S A. 1988;85:7852–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hong HK, Chakravarti A, Takahashi JS. The gene for soluble N-ethylmaleimide sensitive factor attachment protein {alpha} is mutated in hydrocephaly with hop gait (hyh) mice. Proc Natl Acad Sci U S A. 2004;101:1748–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Https://gtexportal.org/home/gene/NSF

  33. Diaz R, Mayorga LS, Weidman PJ, Rothman JE, Stahl PD. Vesicle fusion following receptor-mediated endocytosis requires a protein active in Golgi transport. Nature. 1989;339:398–400.

    Article  PubMed  CAS  Google Scholar 

  34. Wattenberg BW, Raub TJ, Hiebsch RR, Weidman PJ. The activity of Golgi transport vesicles depends on the presence of the N-ethylmaleimide-sensitive factor (NSF) and a soluble NSF attachment protein (alpha SNAP) during vesicle formation. J Cell Biol. 1992;118:1321–32.

    Article  PubMed  CAS  Google Scholar 

  35. Acharya U, Jacobs R, Peters JM, Watson N, Farquhar MG, Malhotra V. The formation of Golgi stacks from vesiculated Golgi membranes requires two distinct fusion events. Cell. 1995;82:895–904.

    Article  PubMed  CAS  Google Scholar 

  36. Naslavsky N, McKenzie J, Altan-Bonnet N, Sheff D, Caplan S. EHD3 regulates early-endosome-to-Golgi transport and preserves Golgi morphology. J Cell Sci. 2009;122:389–400.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Mullock BM, Bright NA, Fearon CW, Gray SR, Luzio J. Fusion of Lysosomes with Late Endosomes Produces a Hybrid Organelle of Intermediate Density and Is NSF Dependent. J Cell Biol. 1998;140(3):591–601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Petanceska S, Burke S, Watson SJ, Devi L. Differential distribution of messenger RNAs for cathepsins B, L and S in adult rat brain: an in situ hybridization study. Neuroscience. 1994;59:729–38.

    Article  PubMed  CAS  Google Scholar 

  39. Gómez-Sintes R, Ledesma MD, Boya P. Lysosomal cell death mechanisms in aging. Ageing Res Rev. 2016;32:150–168.

  40. Repnik U, Stoka V, Turk V, Turk B. Lysosomes and lysosomal cathepsins in cell death. Biochim Biophys Acta. 1824;2012:22–33.

    Google Scholar 

  41. Jakobson M, Jakobson M, Llano O, Palgi J, Arumäe U. Multiple mechanisms repress N-Bak mRNA translation in the healthy and apoptotic neurons. Cell Death Dis. 2013;4:e777.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Akhtar RS, Ness JM, Roth KA. Bcl-2 family regulation of neuronal development and neurodegeneration. Biochim Biophys Acta. 1644;2004:189–203.

    Google Scholar 

  43. Serrano-Puebla A, Boya P. Lysosomal membrane permeabilization in cell death: new evidence and implications for health and disease. Ann N Y Acad Sci. 2016;1371:30–44.

    Article  PubMed  Google Scholar 

  44. Prunell GF, Mathiesen T, Svendgaard NA. Experimental subarachnoid hemorrhage: cerebral blood flow and brain metabolism during the acute phase in three different models in the rat. Neurosurgery. 2004;54:426–36.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Institutes of Health (NIH) grants: NS36810, NS40407, and NS097875; by Veteran Affair Merit grant: I01BX001696; and by the American Heart Association 0940042N-5 to B.R.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingren Hu.

Ethics declarations

Conflict of Interest

Dong Yuan, Chunli Liu, and Bingren Hu declare no conflict of interest.

Ethical Approval

This article does not contain any studies with human subjects. All the experimental procedures involving using animals were approved by the Animal Use and Care Committee in the University of Maryland School of Medicine.

Additional information

The original version of this article was revised: The author name “Dr. Jiang Wu” needed to be added as the 3rd author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, D., Liu, C., Wu, J. et al. Inactivation of NSF ATPase Leads to Cathepsin B Release After Transient Cerebral Ischemia. Transl. Stroke Res. 9, 201–213 (2018). https://doi.org/10.1007/s12975-017-0571-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-017-0571-1

Keywords

Navigation