Skip to main content

Advertisement

Log in

Prevention of Cyclophilin D-Mediated mPTP Opening Using Cyclosporine-A Alleviates the Elevation of Necroptosis, Autophagy and Apoptosis-Related Markers Following Global Cerebral Ischemia-Reperfusion

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The mitochondrial permeability transition pore (mPTP) is a complex channel of the inner membrane, the opening of which leads to mitochondrial swelling and dissipation of mitochondrial membrane potential (MMP). Here, we aimed to evaluate the role of the cyclophilin D (CypD) as a prominent mediator of mPTP, on necroptosis and autophagy as well as apoptosis, beyond the global cerebral ischemia-reperfusion (I/R) injury. We showed that while cerebral I/R injury is accompanied by loss of MMP, mitochondrial swelling and programmed cell death, pretreatment with cyclosporine-A (CsA) as a potent inhibitor of CypD, led to partial but significant reduction in necroptosis markers, RIP1 and RIP3 as well as activity of glutamate-ammonia ligase (GLUL) and glutamate dehydrogenase 1 (GLUD1), downstream enzymes of RIP3. Administration of CsA also partially decreased autophagy associated proteins. Furthermore, we demonstrated that Bax/Bcl-2 ratio as well as caspase-3 activation, as the executioner of apoptosis, noticeably decreased by CsA pretreatment. Taken together, our results suggest that the CypD alongside the apoptosis regulation plays a partial role in inducing necroptosis and autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexandrov AV (2010) Current and future recanalization strategies for acute ischemic stroke. J Intern Med 267(2):209–219

    Article  CAS  PubMed  Google Scholar 

  • Baines CP, Kaiser RA, Purcell NH et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434(7033):658–662

    Article  CAS  PubMed  Google Scholar 

  • Baracca A, Sgarbi G, Solaini G, Lenaz G (2003) Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F0 during ATP synthesis. Biochim Biophys Acta (BBA) - Bioenergetics 1606(1–3):137–146

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Clark JB, Nicklas WJ (1970) The metabolism of rat brain mitochondria. Preparation and characterization. J Biol Chem 245(18):4724–4731

    CAS  PubMed  Google Scholar 

  • Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2):233–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degterev A, Huang Z, Boyce M et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1(2):112–119

    Article  CAS  PubMed  Google Scholar 

  • Diler AS, Ziylan YZ, Uzum G, Lefauconnier JM, Seylaz J, Pinard E (2002) Passage of spermidine across the blood–brain barrier in short recirculation periods following global cerebral ischemia: effects of mild hyperthermia. Neurosci Res 43(4):335–342

    Article  CAS  PubMed  Google Scholar 

  • Doherty D (1970) [119] l-glutamate dehydrogenases (yeast). Methods Enzymol 17(Part A):850–856, Academic Press

    Article  Google Scholar 

  • Domanska-Janik K, Buzanska L, Dluzniewska J, Kozlowska H, Sarnowska A, Zablocka B (2004) Neuroprotection by cyclosporin A following transient brain ischemia correlates with the inhibition of the early efflux of cytochrome C to cytoplasm. Brain Res Mol Brain Res 121(1–2):50–59

    Article  CAS  PubMed  Google Scholar 

  • Elmore SP, Qian T, Grissom SF, Lemasters JJ (2001) The mitochondrial permeability transition initiates autophagy in rat hepatocytes. Faseb J 15(12):2286–2287

    CAS  PubMed  Google Scholar 

  • Elrod JW, Molkentin JD (2013) Physiologic functions of cyclophilin D and the mitochondrial permeability transition pore. Circ J 77(5):1111–1122

    Article  CAS  PubMed  Google Scholar 

  • Giampietri C., Starace D. (2014) Necroptosis: molecular signalling and translational implications. 2014: 490275

  • Griffiths EJ, Halestrap AP (1991) Further evidence that cyclosporin A protects mitochondria from calcium overload by inhibiting a matrix peptidyl-prolyl cis-trans isomerase. Implications for the immunosuppressive and toxic effects of cyclosporin. Biochem J 274(Pt 2):611–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46(6):821–831

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection. Cardiovasc Res 61(3):372–385

    Article  CAS  PubMed  Google Scholar 

  • He S, Wang L, Miao L et al (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137(6):1100–1111

    Article  CAS  PubMed  Google Scholar 

  • Hossmann KA (1998) Thresholds of ischemic injury. In: Cerebrovascular Disease. Pathophysiology, Diagnosis, and Treatment. M. D. Ginsberg, Bogousslavsky, J. (Eds.). Malden, MA, USA, Blackwell Science. 1: 193–204

  • Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J 19(21):5720–5728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karch J, Kanisicak O, Brody MJ, Sargent MA, Michael DM, Molkentin JD (2015) Necroptosis Interfaces with MOMP and the MPTP in Mediating Cell Death. PLoS ONE 10(6), e0130520

    Article  PubMed  PubMed Central  Google Scholar 

  • Kingdon HS, Hubbard JS, Stadtman ER (1968) Regulation of glutamine synthetase XI. The nature and implications of a lag phase in the Escherichia coli glutamine synthetase reaction. Biochemistry 7(6):2136–2142

    Article  CAS  PubMed  Google Scholar 

  • Li SQ, Zhang Y, Tang DB (2009) Possible mechanisms of Cyclosporin A ameliorated the ischemic microenvironment and inhibited mitochondria stress in tree shrews’ hippocampus. Pathophysiology 16(4):279–284

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto S, Friberg H, Ferrand-Drake M, Wieloch T (1999) Blockade of the mitochondrial permeability transition pore diminishes infarct size in the rat after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 19(7):736–741

    Article  CAS  PubMed  Google Scholar 

  • Mehta SL, Manhas N, Raghubir R (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 54(1):34–66

    Article  CAS  PubMed  Google Scholar 

  • Mohagheghi F, Ahmadiani A, Rahmani B, Moradi F, Romond N, Khalaj L (2013a) Gemfibrozil pretreatment resulted in a sexually dimorphic outcome in the rat models of global cerebral ischemia-reperfusion via modulation of mitochondrial pro-survival and apoptotic cell death factors as well as MAPKs. J Mol Neurosci 50(3):379–393

    Article  CAS  PubMed  Google Scholar 

  • Mohagheghi F, Khalaj L, Ahmadiani A, Rahmani B (2013b) Gemfibrozil pretreatment affecting antioxidant defense system and inflammatory, but not Nrf-2 signaling pathways resulted in female neuroprotection and male neurotoxicity in the rat models of global cerebral ischemia-reperfusion. Neurotox Res 23(3):225–237

    Article  CAS  PubMed  Google Scholar 

  • Murozono M, Matsumoto S, Matsumoto E, Isshiki A, Watanabe Y (2004) Neuroprotective and neurotoxic effects of cyclosporine A on transient focal ischemia in mdr1a knockout mice. Eur J Pharmacol 498(1–3):115–118

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Shimizu S, Watanabe T et al (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434(7033):652–658

    Article  CAS  PubMed  Google Scholar 

  • Nikseresht S, Khodagholi F, Nategh M, Dargahi L (2015) RIP1 Inhibition Rescues from LPS-Induced RIP3-Mediated Programmed Cell Death, Distributed Energy Metabolism and Spatial Memory Impairment. J Mol Neurosci 57(2):219–230

    Article  CAS  PubMed  Google Scholar 

  • Osman MM, Lulic D, Glover L et al (2011) Cyclosporine-A as a neuroprotective agent against stroke: its translation from laboratory research to clinical application. Neuropeptides 45(6):359–368

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Elsevier Academic press, Amsterdam

    Google Scholar 

  • Pulsinelli WA (1985) Selective neuronal vulnerability: morphological and molecular characteristics. Prog Brain Res 63:29–37

    Article  CAS  PubMed  Google Scholar 

  • Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10(3):267–272

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Enriquez S, He L, Lemasters JJ (2004) Role of mitochondrial permeability transition pores in mitochondrial autophagy. Int J Biochem Cell Biol 36(12):2463–2472

    Article  CAS  PubMed  Google Scholar 

  • Sawai H (2014) Characterization of TNF-induced caspase-independent necroptosis. Leuk Res 38(6):706–713

    Article  CAS  PubMed  Google Scholar 

  • Schinzel AC, Takeuchi O, Huang Z et al (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci U S A 102(34):12005–12010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tait SW, Oberst A, Quarato G et al (2013) Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep 5(4):878–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Temkin V, Huang Q, Liu H, Osada H, Pope RM (2006) Inhibition of ADP/ATP exchange in receptor-interacting protein-mediated necrosis. Mol Cell Biol 26(6):2215–2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tischner D, Manzl C, Soratroi C, Villunger A, Krumschnabel G (2012) Necrosis-like death can engage multiple pro-apoptotic Bcl-2 protein family members. Apoptosis 17(11):1197–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanden Berghe T, Vanlangenakker N, Parthoens E et al (2010) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 17(6):922–930

    Article  CAS  PubMed  Google Scholar 

  • Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11(10):700–714

    Article  CAS  PubMed  Google Scholar 

  • Walsh CM (2014) Grand challenges in cell death and survival: apoptosis vs. necroptosis. Front Cell Dev Biol 2:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei K, Wang P, Miao CY (2012) A double-edged sword with therapeutic potential: an updated role of autophagy in ischemic cerebral injury. CNS Neurosci Ther 18(11):879–886

    Article  PubMed  Google Scholar 

  • Woodfield K, Rück A, Brdiczka D, Halestrap AP (1998) Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem J 336(Pt 2):287–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Shen F, Lin L, Zhang X, Bruce IC, Xia Q (2006) The neuroprotection conferred by activating the mitochondrial ATP-sensitive K+ channel is mediated by inhibiting the mitochondrial permeability transition pore. Neurosci Lett 402(1–2):184–189

    Article  CAS  PubMed  Google Scholar 

  • Yuen CM, Sun CK, Lin YC et al (2011) Combination of cyclosporine and erythropoietin improves brain infarct size and neurological function in rats after ischemic stroke. J Transl Med 9:141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DW, Shao J, Lin J et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325(5938):332–336

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Zhang Y, Cui M (2016) CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med 22(2):175–182

    Article  PubMed  Google Scholar 

  • Zhao H, Ning J, Lemaire A et al (2015) Necroptosis and parthanatos are involved in remote lung injury after receiving ischemic renal allografts in rats. Kidney Int 87(4):738–748

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Ye L, Liu H et al (2010) Vanadium compounds induced mitochondria permeability transition pore (PTP) opening related to oxidative stress. J Inorg Biochem 104(4):371–378

    Article  CAS  PubMed  Google Scholar 

  • Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192(7):1001–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is part of PhD student thesis of Farinoosh Fakharnia at Shahid Beheshti University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolhassan Ahmadiani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakharnia, F., Khodagholi, F., Dargahi, L. et al. Prevention of Cyclophilin D-Mediated mPTP Opening Using Cyclosporine-A Alleviates the Elevation of Necroptosis, Autophagy and Apoptosis-Related Markers Following Global Cerebral Ischemia-Reperfusion. J Mol Neurosci 61, 52–60 (2017). https://doi.org/10.1007/s12031-016-0843-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-016-0843-3

Keywords

Navigation