Skip to main content

Advertisement

Log in

Peptide Scaffolds: Flexible Molecular Structures With Diverse Therapeutic Potentials

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Peptide scaffolds are diverse chemical structures providing a major base for drug development. Nature modifies a premature peptide with respect to a basic scaffold structure to create a mature and active peptide. Mimicking the natural scaffolds with desirable modifications i.e., scaffold-hopping will decrease the enormous efforts of chemical syntheses and testing for drug development. We have surveyed the scaffold-based compounds being used for anticancer, antiinfective, antiinflammatory and antidiabetic activities. Synthetic peptidomimetics like aptamers, dendrimers, arylamide foldamers, β peptides, d peptides etc. provide an anticipative picture for the therapeutic use of scaffold structures. Free energy based conformational analysis of peptidomimetics provides details of their structure–activity relationships. Diverse forms of such peptidomimetics with respect to their structure and applications are discussed alongwith the mimetics which reached clinical trials. The review gives an insight into the future panoramas of drug development and identifies few peptide scaffolds having diverse potential with chemical modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrafiotis DK, Wiener JJM (2010) Scaffold explorer: an interactive tool for organizing and mining structure-activity data spanning multiple chemotypes. J Med Chem 53:5002–5011

    Article  PubMed  CAS  Google Scholar 

  • Ahlstro MM, Ridderstro M, Luthman K, Zamora I (2005) Virtual screening and scaffold hopping based on GRID molecular interaction fields. J Chem Inf Model 45:1313–1323

    Article  CAS  Google Scholar 

  • Ali M, Hicks AER, Hellawell PG, Thoma G, Norman KE (2004) Polymers bearing sLex-mimetics are superior inhibitors of E-selectin-dependent leukocyte rolling in vivo. FASEB J 18:152–154

    PubMed  CAS  Google Scholar 

  • Applet C, Wessolowski A, Dathe M, Schmieder P (2008) Structures of cyclic, antimicrobial peptides in a membrane-mimicking environment define requirements for activity. J Pept Sci 14:524–527

    Article  CAS  Google Scholar 

  • Artis DR, Lina JJ, Zhang C, Wang W, Mehra U, Perreault M, Erbe D, Krupka HI, England BP, Arnold J, Plotnikova AN, Marimuthua A, Nguyena H, Will S, Signaevskyc M (2009) Scaffold-based discovery of indeglitazar, a PPAR pan-active anti-diabetic agent. PNAS 106:262–267

    Article  PubMed  CAS  Google Scholar 

  • Baines AT, Xu D, Der CJ (2011) Inhibition of Ras for cancer treatment: the search continues. Futur Med Chem 3:1787–1808

    Article  CAS  Google Scholar 

  • Bergmann R, Linusson A, Zamora I (2007) SHOP: scaffold hopping by GRID-based similarity searches. J Med Chem 50:2708–2717

    Article  PubMed  CAS  Google Scholar 

  • Bertinetti BV, Pena NI, Cabrera GM (2009) An antifungal tetrapeptide from the culture of Penicillium canescens. Chem Biodivers 6:1178–1184

    Article  PubMed  CAS  Google Scholar 

  • Biancalana M, Makabe K, Koide A, Koide S (2009) Molecular mechanism of thioflavin-T binding to the surface of beta-rich peptide self-assemblies. J Mol Biol 385:1052–1063

    Article  PubMed  CAS  Google Scholar 

  • Boehm M, Wu T, Claussen H, Lemmen C (2008) Similarity searching and scaffold hopping in synthetically accessible combinatorial chemistry spaces. J Med Chem 51:2468–2480

    Article  PubMed  CAS  Google Scholar 

  • Borghouts C, Kunz C, Groner B (2005) Current strategies for the development of peptide-based anti-cancer therapeutics. J Pept Sci 11:713–726

    Article  PubMed  CAS  Google Scholar 

  • Bouget K, Aubin S, Delcros J, Arlot-Bonnemainsc Y, Baudy-Floc’ha M (2003) Hydrazino-Aza and N-Azapeptoids with therapeutic potential as anticancer agents. Bioorganic Med Chem 11:4881–4889

    Article  CAS  Google Scholar 

  • Brown N, Jacoby E (2006) On scaffolds and hopping in medicinal chemistry. Med Chem 6:1217–1229

    CAS  Google Scholar 

  • Brown NJ, Johansson J, Barron AE (2008a) Biomimicry of surfactant protein C. Acc Chem Res 41:1409–1417

    Article  PubMed  CAS  Google Scholar 

  • Brown NJ, Wu CW, Servoss SLS, Barron AE (2008b) Effects of hydrophobic helix length and side chain chemistry on biomimicry in peptoid analogues of SP-C. Biochemistry 47:1808–1818

    Article  PubMed  CAS  Google Scholar 

  • Brunner TB, Geiger M, Grabenbauer GG, Lang-Welzenbach M, Mantoni TS, Cavallaro A, Sauer R, Hohenberger W, McKenna WG (2008) Phase I trial of the human immunodeficiency virus protease inhibitor Nelfinavir and chemoradiation for locally advanced pancreatic cancer. J Clin Oncol 26:2699–2706

    Article  PubMed  CAS  Google Scholar 

  • Butz K, Denk C, Fitscher B, Mertens IC, Ullmann A, Schroder CH, Seyler FH (2001) Peptide aptamers targeting the hepatitis B virus core protein: a new class of molecules with antiviral activity. Oncogene 20:6579–6586

    Article  PubMed  CAS  Google Scholar 

  • Camb CA, Abedi M (2000) Methods and compositions for peptide libraries displayed on light-emitting scaffolds. United States Patent 6025485

  • Cass CAP, Burg KLJ (2012) Tannic acid cross-linked collagen scaffolds and their anti-cancer potential in a tissue engineered breast implant. J Biomater Sci Polym Ed 23:281–298. doi: 10.1163/092050610X550331

    Article  PubMed  CAS  Google Scholar 

  • Cavallarin L, Andreu D, Segundo BS (1998) Cecropin A—derived peptides are potent inhibitors of fungal plant pathogens. MPMI 11:218–227

    Article  PubMed  CAS  Google Scholar 

  • Choi S, Isaacs A, Clemen D, Liuc D, Kim H, Scott RW, Winkler JD, DeGrado WF (2009) De novo design and in vivo activity of conformationally restrained antimicrobial arylamide foldamers. PNAS 106:6968–6973

    Article  PubMed  CAS  Google Scholar 

  • Chongsiriwatana NP, Patch JA, Czyzewski AM, Dohm MT, Ivankin A, Gidalevitz D, Zuckermann RN, Barron AE (2008) Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides. PNAS 105:2794–2799

    Article  PubMed  CAS  Google Scholar 

  • Clarke DJ, Campopiano DJ (2007) Maturation of McjA precursor peptide into active microcin MccJ25. Org Biomol Chem 5:2564–2566

    Article  PubMed  CAS  Google Scholar 

  • Cole AM, Wise P, Diomand G (1997) Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J Biol Chem 272:12008–12013

    Article  PubMed  CAS  Google Scholar 

  • Collas P (2008) The eleven year switch of peptide aptamers. J Biol 7:2. doi:10.1186/jbiol64

    Article  Google Scholar 

  • Crespo L, Sanclimens G, Pons M, Giralt E, Royo M, Albericio F (2005) Peptide and amide bond-containing dendrimers. Chem Rev 105:1663–1681

    Article  PubMed  CAS  Google Scholar 

  • Dang XL, Wang YS, Huang YD, Yu XQ, Zhang WQ (2010) Purification and characterization of an antimicrobial peptide, insect defensin, from immunized house fly (Diptera: Muscidae). J Med Entomol 47:1141–1145

    Article  PubMed  CAS  Google Scholar 

  • de Sa Alves FR, Barreiro EJ, Fraga CA (2009) From nature to drug discovery: the indole scaffold as a ‘privileged structure’. Mini Rev Med Chem 9:782–793

    Article  PubMed  Google Scholar 

  • Delfraissya J, Flandreb P, Delaugerrec C, Ghosna J, Horband A, Girarde P, Nortonf M, Rouziouxc C, Taburetg A, Cohen-Codarf I, Vanf PN, Chauvin J (2008) Lopinavir/ritonavir monotherapy or plus zidovudine and lamivudine in antiretroviral-naïve HIV-infected patients. AIDS 22:385–393

    Article  CAS  Google Scholar 

  • Desideri N, Bolasco A, Fioravanti R, Monaco LP, Orallo F, Yane M, Ortuso F, Alcaro S (2011) Homoisoflavonoids: natural scaffolds with potent and selective monoamine oxidase-B inhibition properties. J Med Chem 54:2155–2164

    Article  PubMed  CAS  Google Scholar 

  • Destoumieux D, Munoz M, Cosseaul C, Rodriguez J, Bulet P, Comps M, Bachère E (1997) Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem 272:28398–28406

    Article  PubMed  CAS  Google Scholar 

  • Filipe LCS, Machuqueiro M, Baptista AM (2011) Unfolding the conformational behavior of peptide dendrimers: insights from molecular dynamics simulations. J Am Chem Soc 133:5042–5052

    Article  PubMed  CAS  Google Scholar 

  • Findlay B, Zhanel GG, Schweizer F (2010) Cationic amphiphiles, a new generation of antimicrobials inspired by the natural antimicrobial peptide scaffold. Antimicrob Agents Chemother 54:4049–4058

    Article  PubMed  CAS  Google Scholar 

  • Fjell CD, Jenssen H, Hilpert K, Cheung WA, Pante′ N, Hancock REW, Cherkasov A (2009) Identification of novel antibacterial peptides by chemoinformatics and machine learning. J Med Chem 52:2006–2015

    Article  PubMed  CAS  Google Scholar 

  • Foillard S, Sancey L, Coll J, Boturyn D, Dumy P (2009) Targeted delivery of activatable fluorescent pro-apoptotic peptide into live cells. Org Biomol Chem 7:221–224

    Article  PubMed  CAS  Google Scholar 

  • Gargouri SH, Jellouli-Chaker N, Gargouri A (2010) Factors affecting production and stability of the AcAFP antifungal peptide secreted by Aspergillus clavatus. Appl Microbiol Biotechnol 86:535–543

    Article  PubMed  CAS  Google Scholar 

  • Garsky VM, Joyce JG, Keller PM, Liang X, Shiver JW (2011) Peptide conjugate compositions and methods for the prevention and treatment of Alzheimer’s disease. European Patent Application EP2269633

  • Gelain F, Horii A, Zhang S (2007) Designer self-assembling peptide scaffolds for 3-D tissue cell cultures and regenerative medicine. Macromol Biosci 7:544–551

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Nie A, An J, Huang Z (2006) Structure-based virtual screening of chemical libraries for drug discovery. Curr Opin Chem Biol 10:194–202

    Article  PubMed  CAS  Google Scholar 

  • Gilch S, Kehler C, Schätzl HM (2007) Peptide aptamers expressed in the secretory pathway interfere with cellular PrPSc formation. J Mol Biol 371:362–373

    Article  PubMed  CAS  Google Scholar 

  • Giuliani A, Rinaldi AC (2011) Beyond natural antimicrobial peptides: multimeric peptides and other peptidomimetic approaches. Cell Mol Life Sci 68:2255–2266

    Article  PubMed  CAS  Google Scholar 

  • Giuliani A, Pirri G, Nicoletto SF (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. CEJB 2:1–33

    CAS  Google Scholar 

  • Godballe T, Nilsson LL, Petersen PD, Jenssen H (2011) Antimicrobial β-peptides and α-peptoids. Chem Biol Drug Des 77:107–116

    Article  PubMed  CAS  Google Scholar 

  • Gong Y, Cheon H, Lee T, Kang N (2010) A novel 3-(8-Chloro-6-(trifluoromethyl)imidazo[1, 2-a]pyridine-2-yl)phenyl acetate skeleton and pharmacophore model as glucagon-like peptide 1 receptor agonists. Bull Korean Chem Soc 31:3760–3764. doi:10.5012/bkcs.2010.31.12.3760

    Article  CAS  Google Scholar 

  • Grabowski K, Baringhaus KH, Schneider G (2008) Scaffold diversity of natural products: inspiration for combinatorial library design. Nat Prod Rep 25:892–904

    Article  PubMed  CAS  Google Scholar 

  • Gruzman A, Babai G, Sasson S (2009) Adenosine monophosphate-activated protein kinase (AMPK) as a new target for antidiabetic drugs: a review on metabolic, pharmacological and chemical considerations. Rev Diabet Stud 6:13–36

    Article  PubMed  Google Scholar 

  • Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: a review. Appl Biochem Microbiol 44:136–142

    Article  CAS  Google Scholar 

  • Gupta K, Kumar M, Balaram P (2010) Disulfide bond assignments by mass spectrometry of native natural peptides: cysteine pairing in disulfide bonded conotoxins. Anal Chem 82:8313–8319

    Article  PubMed  CAS  Google Scholar 

  • Hajji M, Jellouli K, Hmidet N, Balti R, Sellami-Kamoun A, Nasri M (2010) A highly thermostable antimicrobial peptide from Aspergillus clavatus ES1: biochemical and molecular characterization. J Ind Microbiol Biotechnol 37:805–813. doi:10.1007/s10295-010-0725-6

    Article  PubMed  CAS  Google Scholar 

  • Hamilton AD, Hamuro Y (1998) Synthetic antibody mimics—multiple peptide loops attached to a molecular scaffold. United States Patent 5770380

  • Hancock REW, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323

    PubMed  CAS  Google Scholar 

  • Haug BE, Stensen W, Kalaaji M, Rekdal O, Svendsen JS (2008) Synthetic antimicrobial peptidomimetics with therapeutic potential. J Med Chem 51:4306–4314

    Article  PubMed  CAS  Google Scholar 

  • Huang H, She Z, Lin Y, Vrijmoed LL, Lin W (2007) Cyclic peptides from an endophytic fungus obtained from a mangrove leaf (Kandelia candel). J Nat Prod 70:1696–1699

    Article  PubMed  CAS  Google Scholar 

  • Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511

    Article  PubMed  CAS  Google Scholar 

  • Kaiserer L, Oberparleiter C, Weiler-Görz R, Burgstaller W, Leiter E, Marx F (2003) Characterization of the Penicillium chrysogenum antifungal protein PAF. Arch Microbiol 180:204–210

    Article  PubMed  CAS  Google Scholar 

  • Kastenholz MA, Pastor M, Cruciani G, Haaksma EEJ, Fox T (2000) GRID/CPCA: a new computational tool to design selective ligands. J Med Chem 43:3033–3304

    Article  PubMed  CAS  Google Scholar 

  • Kitts DD, Weiler K (2003) Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des 9:1309–1323

    Article  PubMed  CAS  Google Scholar 

  • Ko E, Liu J, Burgess K (2011) Minimalist and universal peptidomimetics. Chem Soc Rev 40:4411–4421. doi:10.1039/c0cs00218f

    Article  PubMed  CAS  Google Scholar 

  • Koponen O, Tolonen M, Qiao M, Wahlström G, Helin J, Saris PEJ (2002) NisB is required for the dehydration and NisC for the lanthionine formation in the post-translational modification of nisin. Microbiology 148:3561–3568

    PubMed  CAS  Google Scholar 

  • Lai X, Feng Y, Pollard J, Chin JN, Rybak MJ, Bucki R, Epand RF, Epand RM, Savage PB (2008) Ceragenins: cholic acid-based mimics of antimicrobial peptides. Acc Chem Res 41:1233–1240

    Article  PubMed  CAS  Google Scholar 

  • Lee CC, MacKay JA, Frechet JMJ, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23:1517–1526

    Article  PubMed  CAS  Google Scholar 

  • Lempens EHM, Helms BA, Bayles AR, Merkx M, Meijer EW (2010) A versatile, modular platform for multivalent peptide ligands based on a dendritic wedge. Eur J Org Chem 2010:111–119

    Article  CAS  Google Scholar 

  • Leppala A (2000) Bioactive peptides derived from bovine whey proteins: opioid and ace-inhibitory peptides. Trends Food Sci Technol 11:347–356

    Article  Google Scholar 

  • Lindholm P, Göransson U, Johansson S (2002) Cyclotides: a novel type of cytotoxic agents. Mol Cancer Ther 1:365–369

    Article  PubMed  CAS  Google Scholar 

  • Liou J, Deng W, Gilroy D, Shyue S, Wu KK (2001) Colocalization and interaction of cyclooxygenase-2 with caveolin-1 in human fibroblasts. J Biol Chem 276:34975–34982

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Deshazer H, Rice AJ, Chen K, Zhou C, Kallenbach NR (2006) Multivalent antimicrobial peptides from a reactive polymer scaffold. J Med Chem 49:3436–3439

    Article  PubMed  CAS  Google Scholar 

  • Liu SP, Zhou L, Lakshminarayanan R, Beuerman RW (2010) Multivalent antimicrobial peptides as therapeutics: design principles and structural diversities. Int J Pept Res Ther 16:199–213

    Article  PubMed  CAS  Google Scholar 

  • Loffet A (2002) Peptides as drugs: is there a market? J Pept Sci 8:1–7

    Article  PubMed  CAS  Google Scholar 

  • Lou K, Writer S (2010) A new spin on protegrin. SciBX 3(9):1–2. doi: 10.1038/scibx.2010.265

    Google Scholar 

  • Mancini I, Defant A, Guella G (2007) Recent synthesis of marine natural products with antibacterial activities. Anti-Infect Agents Med Chem 6:17–48

    CAS  Google Scholar 

  • Marcos JF, Munoz A, PerezPaya E, Misra S, opez-Garcia B (2008) Identification and rational design of novel antimicrobial peptides for plant protection. Annu Rev Phytopathol 46:273–301

    Article  PubMed  CAS  Google Scholar 

  • Mas-Moruno C, Rechenmacher F, Kessler H (2010) Cilengitide: the first anti-angiogenic small molecule drug candidate. Design, synthesis and clinical evaluation. Anti-Cancer Agents Med Chem 10:753–768

    Article  CAS  Google Scholar 

  • Maupetit J, Derreumaux P, Tufféry P (2009) PEP-FOLD: an online resource for de novo peptide structure prediction. Nucleic Acids Res 37:498–503. doi: 10.1093/nar/gkp323

    Article  CAS  Google Scholar 

  • Meyer V (2008) A small protein that fights fungi: AFP as a new promising antifungal agent of biotechnological value. Appl Microbiol Biotechnol 78:17–28. doi: 10.1007/s00253-007-1291-3

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P (2002) A perspective on protein microarrays. Nat Biotechnol 20:225–229

    Article  PubMed  CAS  Google Scholar 

  • Monk BC, Niimi K, Lin S, Knight A, Kardos TB, Cannon RD, Parshot R, King A, Lun D, Harding DRK (2005) Surface-active fungicidal D-peptide inhibitors of the plasma membrane proton pump that block azole resistance. Antimicrob Agents Chemother 49:57–70

    Article  PubMed  CAS  Google Scholar 

  • Moradi S, Soltani S, Ansari AM, Sardari S (2009) Peptidomimetics and their applications in antifungal drug design. Anti-Infect Agents Med Chem 8:327–344

    CAS  Google Scholar 

  • Nakaya K, Omata K, Okahashi I, Nakamura Y, Kolkenbrock H, Ulbrich N (1990) Amino acid sequence and disulfide bridges of an antifungal protein isolated from Aspergillus giganteus. Eur J Biochem 193:31–38

    Article  PubMed  CAS  Google Scholar 

  • Nemec KN, Khaled AR (2008) Therapeutic modulation of apoptosis: targeting the BCL-2 family at the interface of the mitochondrial membrane. Yonsei Med J 49:689–697

    Article  PubMed  CAS  Google Scholar 

  • Nijnik A, Madera L, Ma S, Waldbrook M, Elliott MR, Easton DM, Mayer ML, Mullaly SC, Kindrachuk J, Jenssen H, Hancock REW (2010) Synthetic cationic peptide IDR-1002 provides protection against bacterial infections through chemokine induction and enhanced leukocyte recruitment. J Immunol 184:2539–2550

    Article  PubMed  CAS  Google Scholar 

  • Nolan EM, Walsh CT (2009) How nature morphs peptide scaffolds into antibiotics. Chembiochem 10:34–53

    Article  PubMed  CAS  Google Scholar 

  • Park CB, Kim MS, Kim SC (1996) A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem Biophys Res Commun 218:408–413

    Article  PubMed  CAS  Google Scholar 

  • Pathak A, Singh SK, Biabani MA, Kulshreshtha DK, Puri SK, Srivastava S, Kundu B (2002) Synthesis of combinatorial libraries based on terpenoid scaffolds. Comb Chem High Throughput Screen 5:241–248

    PubMed  CAS  Google Scholar 

  • Paul J, Powers S, Hancock REW (2003) The relationship between peptide structure and antibacterial activity. Peptides 24:1681–1691

    Article  CAS  Google Scholar 

  • Peng L, Liu R, Marik J, Wang X, Takada Y, Lam KS (2006) Combinatorial chemistry identifies high-affinity peptidomimetics against α4β1 integrin for in vivo tumor imaging. Nat Chem Biol 2:381–389

    Article  PubMed  CAS  Google Scholar 

  • Peschel A (2002) How do bacteria resist human antimicrobial peptides? Trends Microbiol 10:179–186

    Article  PubMed  CAS  Google Scholar 

  • Pettit RK (2011) Culturability and secondary metabolite diversity of extreme microbes: expanding contribution of deep sea and deep-sea vent microbes to natural product discovery. Mar Biotechnol 13:1–11

    Article  PubMed  CAS  Google Scholar 

  • Pieters RJ, Arnuscha CJ, Breukinkb E (2009) Membrane permeabilization by multivalent anti-microbial peptides. Protein Pept Lett 16:1–7

    Article  Google Scholar 

  • Rebuffat S, Goulard C, Hlimi S, Bodo B (2000) Two unprecedented natural Aib-peptides with the (Xaa-Yaa-Aib-Pro) motif and an unusual C-terminus: structures, membrane-modifying and antibacterial properties of pseudokonins KL III and KL VI from the fungus Trichoderma pseudokoningii. J Pept Sci 6:519–533

    Article  PubMed  CAS  Google Scholar 

  • Renaudet O (2008) Recent advances on cyclopeptide-based glycoclusters. Mini Rev Org Chem 5:274–286

    Article  CAS  Google Scholar 

  • Roch P, Yang Y, Toubiana M, Aumelas A (2008) NMR structure of mussel mytilin, and antiviral-antibacterial activities of derived synthetic peptides. Dev Comp Immunol 32:227–238

    Article  PubMed  CAS  Google Scholar 

  • Rowinsky EK (2006) Lately, it occurs to me what a long, strange trip it’s been for the farnesyl transferase inhibitors. J Clin Oncol 24:2981–2984

    Article  PubMed  CAS  Google Scholar 

  • Rubinchik E, Dugourd D, Algara T, Pasetka C, Friedland HD (2009) Antimicrobial and antifungal activities of a novel cationic antimicrobial peptide, omiganan, in experimental skin colonisation models. Int J Antimicrob Agents 34:457–461

    Article  PubMed  CAS  Google Scholar 

  • Ruttekolk IR, Chakrabarti A, Richter M, Duchardt F, Glauner H, Verdurmen PRW, Rademann J, Brock R (2011) Coupling to polymeric scaffolds stabilizes biofunctional peptides for intracellular applications. Mol Pharmacol Fast Forward 79:692–700. doi: 10.1124/mol.110.068296

    CAS  Google Scholar 

  • Sadler K, Tam JP (2002) Peptide dendrimers: applications and synthesis. Rev Mol Biotechnol 90:195–229

    Article  CAS  Google Scholar 

  • Schneider G (2011) Computational medicinal chemistry. Futur Med Chem 3:393–394

    Article  CAS  Google Scholar 

  • Schneider P, Tanrikulu Y, Schneider G (2009) Self-organizing maps in drug discovery: compound library design, scaffold-hopping, repurposing. Curr Med Chem 16:258–266

    Article  PubMed  CAS  Google Scholar 

  • Seebach D, Overhand M, Kühnle FNM, Martinoni B, Oberer L, Hommel U, Widmer H (1996) β-peptides: synthesis by Arndt-Eistert homologation with concomitant peptide coupling. Structure determination by NMR and CD spectroscopy and by X-ray crystallography. Helical secondary structure of a-hexapeptide in solution and its stability towards pepsin. Helv Chim Acta 79:913–941

    Article  CAS  Google Scholar 

  • Serda M, Musiol R, Polanski J (2010) New thiosemicarbazones based on quinoline scaffold as anticancer iron chelators. In: 14th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-14) abstract: CO13

  • Seyler FH, Mertens IC, Tomai E, Butz K (2004) Peptide aptamers: specific inhibitors of protein function. Curr Mol Med 4:529–538

    Article  Google Scholar 

  • Shi N, Pardridge WM (2000) Noninvasive gene targeting to the brain. PNAS 97:7567–7572

    Article  PubMed  CAS  Google Scholar 

  • Silva SV, Malcata FX (2005) Caseins as source of bioactive peptides. Int Dairy J 15:1–15

    Article  CAS  Google Scholar 

  • Som A, Vemparala S, Ivanov I, Tewl GN (2008) Synthetic mimics of antimicrobial peptides. Biopolymers 90:83–94

    Article  PubMed  CAS  Google Scholar 

  • Sonoda N, Imamura T, Yoshizaki T, Babendure JL, Lu J, Olefsky JM (2008) Beta-Arrestin-1 mediates glucagon-like peptide-1 signaling to insulin secretion in cultured pancreatic beta cells. PNAS 105:6614–6619

    Article  PubMed  CAS  Google Scholar 

  • Sperandio O, Andrieu O, Miteva MA, Vo M, Souaille M, Delfaud F, Villoutreix BO (2007) MED-SuMoLig: a new ligand-based screening tool for efficient scaffold hopping. J Chem Inf Model 47:1097–1110

    Article  PubMed  CAS  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  PubMed  CAS  Google Scholar 

  • Sun C (2005) Design and synthesis of combinatorial scaffolds—diazepinone and homopiperazine. Lett Drug Des Discov 2:48–50

    Article  CAS  Google Scholar 

  • Talarico TL, Dobrogosz WJ (1989) Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob Agents Chemother 33:674–679

    PubMed  CAS  Google Scholar 

  • Tam JP, Lu YA, Yang JL, Chiu KW (1999) An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. PNAS 96:8913–8918

    Article  PubMed  CAS  Google Scholar 

  • Teodoro M, Muegge I (2011) BIBuilder2011: exhaustive searching for de novo ligands. Mol Inf 30:63–75

    Article  CAS  Google Scholar 

  • Tew GN, Scott RW, Klein ML, Degrado WF (2010) De novo design of antimicrobial polymers, foldamers and small molecules: from discovery to practical applications. Acc Chem Res 43:30–39

    Article  PubMed  CAS  Google Scholar 

  • Tomasic T, Masic LP (2009) Rhodanine as a privileged scaffold in drug discovery. Curr Med Chem 16:1596–1629

    Article  PubMed  CAS  Google Scholar 

  • Travis S, Yap LM, Hawkey C, Warren B, Lazarov M, Fong T, Tesi RJ, Group RIS (2005) RDP58 is a novel and potentially effective oral therapy for ulcerative colitis. Inflamm Bowel Dis 11:713–719

    Article  PubMed  Google Scholar 

  • Tsimberidou AM, Rudek MA, Hong D, Ng CS, Blair J, Goldsweig H, Kurzrock R (2010) Phase 1 first-in-human clinical study of S-trans, trans-farnesylthiosalicylic acid (salirasib) in patients with solid tumors. Cancer Chemother Pharmacol 65:235–241

    Article  PubMed  CAS  Google Scholar 

  • Tsuda M, Langmann C, Harden N, Aigaki T (2005) The ring-finger scaffold protein plenty of SH3s targets TAK1 to control immunity signalling in Drosophila. EMBO Rep 6:1082–1087

    Article  PubMed  CAS  Google Scholar 

  • Tsunoyama K, Amini A, Sternberg MJE, Muggleton SH (2008) Scaffold hopping in drug discovery using inductive logic programming. J Chem Inf Model 48:949–957

    Article  PubMed  CAS  Google Scholar 

  • Tung Y, Coumar MS, Wu Y, Shiao H, Chang J, Liou J, Shukla P, Chang C, Kuo C, Yeh T, Lin C, Wu J, Wu S, Liao C, Hsieh H (2010) Scaffold-hopping strategy: synthesis and biological evaluation of 5, 6-fused bicyclic heteroaromatics to identify orally bioavailable anticancer agents. J Med Chem 54:3076–3080. doi:10.1021/jm101027s

    Article  CAS  Google Scholar 

  • Valegard K, van Scheltinga ACT, Lloyd MD, Hara T, Ramaswamy S, Perrakis A, Thompson A, Lee HJ, Baldwin JE, Schofield CJ, Hajdu J, Andersson I (1998) Structure of a cephalosporin synthase. Nature 394:805–809

    Article  PubMed  CAS  Google Scholar 

  • van der Does AM, Bogaards SJP, Ravensbergen B, Beekhuizen H, van Dissel JT, Nibbering PH (2010) Antimicrobial hLF1-11 directs granulocyte-macrophage colony-stimulating factor-driven monocyte differentiation toward macrophages with enhanced recognition and clearance of pathogens. Antimicrob Agents Chemother 54:811–816

    Article  PubMed  CAS  Google Scholar 

  • van der Meer JR, Polman J, Beerthuyzen MM, Siezen RJ, Kuipers OP, De Vos WM (1993) Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. J Bacteriol 175:2578–2588

    PubMed  Google Scholar 

  • van Kasteren SI, Kramer HB, Jensen HH, Campbell SJ, Kirkpatrick J, Oldham NJ, Anthony DC, Davis BG (2007) Expanding the diversity of chemical protein modification allows post-translational mimicry. Nat Lett 446:1105–1109

    Article  CAS  Google Scholar 

  • Varkey J, Singh S, Nagaraj R (2006) Antibacterial activity of linear peptides spanning the carboxy-terminal β-sheet domain of arthropod defensins. Peptides 27:2614–2623

    Article  PubMed  CAS  Google Scholar 

  • Volinsky R, Kolusheva S, Berman A, Jelinek R (2004) Microscopic visualization of alamethicin incorporation into model membrane monolayers. Langmuir 20:11084–11091

    Article  PubMed  CAS  Google Scholar 

  • Walsh CT, Chen H, Keating TA, Hubbard BK, Losey HC, Luo L, Marshall CG, Miller DA, Patel HM (2001) Tailoring enzymes that modify nonribosomal peptides during and after chain elongation on NRPS assembly lines. Curr Opin Chem Biol 5:525–534

    Article  PubMed  CAS  Google Scholar 

  • Wang G (2007) Tool developments for structure-function studies of host defense peptides. Protein Pept Lett 14:57–69

    Article  PubMed  CAS  Google Scholar 

  • Wang FW, Hou CR, Li WP, Shi DH (2008) Bioactive metabolites from Penicillium sp., an endophytic fungus residing in Hopea hainanensis. World J Microbiol Biotechnol 24:2143–2147

    Article  CAS  Google Scholar 

  • Welch BD, VanDemark AP, Heroux A, Hill CP, Kay MS (2007) Potent D-peptide inhibitors of HIV-1 entry. PNAS 104:16828–16833

    Article  PubMed  CAS  Google Scholar 

  • Whelan AP, Dietrich LEP, Newman DK (2006) Rethinking ‘secondary’ metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol 2:71–78

    Article  CAS  Google Scholar 

  • Xiao Y, Harris R, Bayram E, Santago P, Schmitt JD (2006) Supervised self-organizing maps in drug discovery, improvements in descriptor selection and model validation. J Chem Inf Model 46:137–144

    Article  PubMed  CAS  Google Scholar 

  • Yan B, Xue M, Xiong B, Liu K, Hu D, Shen J (2009) ScafBank: a public comprehensive scaffold database to support molecular hopping. Acta Pharmacol Sinica 30:251–258

    Article  CAS  Google Scholar 

  • Yang Z, Zhao X (2011) A 3D model of ovarian cancer cell lines on peptide nanofiber scaffold to explore the cell–scaffold interaction and chemotherapeutic resistance of anticancer drugs. Int J Nanomed 5:303–331

    Article  CAS  Google Scholar 

  • Yang LH, Miao L, Lee OO, Li X, Xiong H, Pang K, Vrijmoed L, Qian P (2007) Effect of culture conditions on antifouling compound production of a sponge-associated fungus. Appl Microbiol Biotechnol 74:1221–1231

    Article  PubMed  CAS  Google Scholar 

  • Yeung ATY, Gellatly SL, Hancock REW (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 68:2161–2176

    Article  PubMed  CAS  Google Scholar 

  • Yount NY, Yeaman MR (2004) Multidimensional signatures in antimicrobial peptides. PNAS 101:7363–7368

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Lang G, Kajahn I, Schmaljohann R, Imhoff JF (2008) Scopularides A and B, cyclodepsipeptides from a marine sponge-derived fungus, Scopulariopsis brevicaulis. J Nat Prod 71:1052–1054

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, An R, Wang J, Sun N, Zhang S, Hu J, Kuai J (2005a) Exploring novel bioactive compounds from marine microbes. Curr Opin Microbiol 8:276–281

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Gelain F, Zhao X (2005b) Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Semin Cancer Biol 15:413–420

    Article  PubMed  Google Scholar 

  • Zhao H (2006) Scaffold selection and scaffold hopping in lead generation: a medicinal chemistry perspective. Drug Discov Today 12:149–155

    Article  PubMed  CAS  Google Scholar 

  • Zhong H, Carlson HA (2005) Computational studies and peptidomimetic design for the human p53–MDM2 complex. Proteins Struct Funct Bioinform 58:222–234

    Article  CAS  Google Scholar 

  • Zhou C, Min J, Liu Z, Young A, Deshazer H, Gao T, Chang Y, Kallenbach NR (2008) Synthesis and biological evaluation of novel 1, 3, 5-triazine derivatives as antimicrobial agents. Bioorg Med Chem Lett 18:1308–1311

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Gao B (2009) A fossil antibacterial peptide gives clues to structural diversity of cathelicidin-derived host defense peptides. FASEB J 23:13–20

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Aumelas A, Gao B (2011) Convergent evolution-guided design of antimicrobial peptides derived from influenza A virus hemagglutinin. J Med Chem 54:1091–1095

    Article  PubMed  CAS  Google Scholar 

  • Zuckerman RN, Kerr JM, Kent SBH, Moos WH (1992) Efficient method for the preparation of peptoids [oligo(N-substituted glycines)] by sub-monomer solid-phase synthesis. J Am Chem Soc 114:10646–10647

    Article  Google Scholar 

Download references

Acknowledgment

We acknowledge the financial support from CSIR for one of the author (Radhika Deshmukh) through CSIR-Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant J. Purohit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deshmukh, R., Purohit, H.J. Peptide Scaffolds: Flexible Molecular Structures With Diverse Therapeutic Potentials. Int J Pept Res Ther 18, 125–143 (2012). https://doi.org/10.1007/s10989-011-9286-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-011-9286-4

Keywords

Navigation