Skip to main content

Advertisement

Log in

Beyond natural antimicrobial peptides: multimeric peptides and other peptidomimetic approaches

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Naturally occurring antimicrobial peptides (AMPs) present several drawbacks that strongly limit their development into therapeutically valuable antibiotics. These include susceptibility to protease degradation and high costs of manufacture. To overcome these problems, researchers have tried to develop mimics or peptidomimetics endowed with better properties, while retaining the basic features of membrane-active natural AMPs such as cationic charge and amphipathic design. Protein epitope mimetics, multimeric (dendrimeric) peptides, oligoacyllysines, ceragenins, synthetic lipidated peptides, peptoids and other foldamers are some of the routes explored so far. The synthetic approach has led to compounds that have already entered clinical evaluation for the treatment of specific conditions, such as Staphylococcus (MRSA) infections. Should these trials be successful, an important proof-of-concept would be established, showing that synthetic oligomers rather than naturally occurring molecules could bring peptide-based antibiotics to clinical practice and the drug market for local and systemic treatment of medical conditions associated with multi-drug resistant pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AMP:

Antimicrobial peptide

MAP:

Multiple antigenic peptide

LPS:

Lipopolysaccharide

LTA:

Lipoteichoic acid

OAK:

Oligoacyllysine

PEM:

Protein epitope mimetic

ROMP:

Ring-opening metathesis polymerization

SMAMP:

Synthetic mimic of antimicrobial peptides

VV:

Vaccinia virus

References

  1. Giuliani A, Rinaldi AC (2010) Antimicrobial peptides. Methods and protocols. Methods in molecular biology, vol 618. Humana Press, New York

    Google Scholar 

  2. van ‘t Hof W, Veerman EC, Helmerhorst EJ, Amerongen AV (2001) Antimicrobial peptides: properties and applicability. Biol Chem 382:597–619

    Article  Google Scholar 

  3. Rotem S, Mor A (2009) Antimicrobial peptide mimics for improved therapeutic properties. Biochim Biophys Acta 1788:1582–1592

    Article  PubMed  CAS  Google Scholar 

  4. Tzeng Y-L, Ambrose KA, Zughaier S, Zhou X, Miller YK, Shafer WM, Stephens DS (2005) Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol 187:5387–5396

    Article  PubMed  CAS  Google Scholar 

  5. Kraus D, Peschel A (2006) Molecular mechanisms of bacterial resistance to antimicrobial peptides. Curr Top Microbiol Immunol 306:231–250

    Article  PubMed  CAS  Google Scholar 

  6. Kraus D, Peschel A (2008) Staphylococcus aureus evasion of innate antimicrobial defense. Future Microbiol 3:437–451

    Article  PubMed  CAS  Google Scholar 

  7. Bessalle R, Kapitkovsky A, Gorea A, Shalit I, Fridkin M (1990) All-d-magainin: chirality, antimicrobial activity and proteolytic resistance. FEBS Lett 274:151–155

    Article  PubMed  CAS  Google Scholar 

  8. Giuliani A, Pirri G, Bozzi A, Di Giulio A, Aschi M, Rinaldi AC (2008) Antimicrobial peptides: natural templates for synthetic membrane-active compounds. Cell Mol Life Sci 65:2450–2460

    Article  PubMed  CAS  Google Scholar 

  9. Tam JP, Spetzler JC (2001) Synthesis and application of peptide dendrimers as protein mimetics. Curr Protoc Protein Sci. Chapter 18:Unit 18.5

  10. Tam JP (1988) Synthetic peptide vaccine design: synthesis and properties of a high density multiple antigenic peptide system. Proc Natl Acad Sci USA 85:5409–5413

    Article  PubMed  CAS  Google Scholar 

  11. Pini A, Giuliani A, Falciani C, Runci Y, Ricci C, Lelli B, Malossi M, Neri P, Rossolini GM, Bracci L (2005) Antimicrobial activity of novel dendrimeric peptides obtained by phage display selection and rational modification. Antimicrob Agents Chemother 49:2665–2672

    Article  PubMed  CAS  Google Scholar 

  12. Bruschi M, Pirri G, Giuliani A, Nicoletto SF, Baster I, Scorciapino MA, Casu M, Rinaldi AC (2010) Synthesis, characterization, antimicrobial activity and LPS-interaction properties of SB041, a novel dendrimeric peptide with antimicrobial properties. Peptides 31:1459–1467

    Article  PubMed  CAS  Google Scholar 

  13. Pini A, Falciani C, Mantengoli E, Bindi S, Brunetti J, Iozzi S, Rossolini GM, Bracci L (2010) A novel tetrabranched antimicrobial peptide that neutralizes bacterial lipopolysaccharide and prevents septic shock in vivo. FASEB J 24:1015–1022

    Article  PubMed  CAS  Google Scholar 

  14. Falciani C, Lozzi L, Pini A, Corti F, Fabbrini M, Bernini A, Lelli B, Niccolai N, Bracci L (2007) Molecular basis of branched peptides resistance to enzyme proteolysis. Chem Biol Drug Des 69:216–221

    Article  PubMed  CAS  Google Scholar 

  15. Luganini A, Giuliani A, Pirri G, Pizzuto L, Landolfo S, Gribaudo G (2010) Peptide-derivatized dendrimers inhibit human cytomegalovirus infection by blocking virus binding to cell surface heparan sulphate. Antiviral Res 85:532–540

    Article  PubMed  CAS  Google Scholar 

  16. Obrecht D, Robinson JA, Bernardini F, Bisang C, DeMarco SJ, Moehle K, Gombert FO (2009) Recent progress in the discovery of macrocyclic compounds as potential anti-infective therapeutics. Curr Med Chem 16:42–65

    Article  PubMed  CAS  Google Scholar 

  17. Lou K (2010) A new spin on protegrin. SciBX 3: doi:10.1038/scibx.2010.265

  18. Srinivas N, Jetter P, Ueberbacher BJ, Werneburg M, Zerbe K, Steinmann J, Van der Meijden B, Bernardini F, Lederer A, Dias RL, Misson PE, Henze H, Zumbrunn J, Gombert FO, Obrecht D, Hunziker P, Schauer S, Ziegler U, Käch A, Eberl L, Riedel K, DeMarco SJ, Robinson JA (2010) Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science 327:1010–1013

    Article  PubMed  CAS  Google Scholar 

  19. Jiang L, Moehle K, Dhanapal B, Obrecht D, Robinson JA (2000) Combinatorial biomimetic chemistry: parallel synthesis of a small library of β-hairpin mimetics based on loop III from human platelet-derived growth factor. Helv Chim Acta 83:3097–3112

    Article  CAS  Google Scholar 

  20. Robinson JA, Demarco S, Gombert F, Moehle K, Obrecht D (2008) The design, structures and therapeutic potential of protein epitope mimetics. Drug Discov Today 13:944–951

    Article  PubMed  CAS  Google Scholar 

  21. Radzishevsky IS, Rotem S, Bourdetsky D, Navon-Venezia S, Carmeli Y, Mor A (2007) Improved antimicrobial peptides based on acyl-lysine oligomers. Nat Biotechnol 25:657–659

    Article  PubMed  CAS  Google Scholar 

  22. Rotem S, Radzishevsky IS, Bourdetsky D, Navon-Venezia S, Carmeli Y, Mor A (2008) Analogous oligo-acyl-lysines with distinct antibacterial mechanisms. FASEB J 22:2652–2661

    Article  PubMed  CAS  Google Scholar 

  23. Rotem S, Raz N, Kashi Y, Mor A (2010) Bacterial capture by peptide-mimetic oligoacyllysine surfaces. Appl Environ Microbiol 76:3301–3307

    Article  PubMed  CAS  Google Scholar 

  24. Sarig H, Livne L, Held-Kuznetsov V, Zaknoon F, Ivankin A, Gidalevitz D, Mor A (2010) A miniature mimic of host defense peptides with systemic antibacterial efficacy. FASEB J 24:1904–1913

    Article  PubMed  CAS  Google Scholar 

  25. Sarig H, Rotem S, Ziserman L, Danino D, Mor A (2008) Impact of self-assembly properties on antibacterial activity of short acyl-lysine oligomers. Antimicrob Agents Chemother 52:4308–4314

    Article  PubMed  CAS  Google Scholar 

  26. Moore KS, Wehrli S, Roder H, Rogers M, Forrest JN Jr, McCrimmon D, Zasloff M (1993) Squalamine: an aminosterol antibiotic from the shark. Proc Natl Acad Sci USA 90:1354–1358

    Article  PubMed  CAS  Google Scholar 

  27. Epand RF, Savage PB, Epand RM (2007) Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). Biochim Biophys Acta 1768:2500–2509

    Article  PubMed  CAS  Google Scholar 

  28. Savage PB, Li C, Taotafa U, Ding B, Guan Q (2002) Antibacterial properties of cationic steroid antibiotics. FEMS Microbiol Lett 217:1–7

    Article  PubMed  CAS  Google Scholar 

  29. Isogai E, Isogai H, Takahashi K, Okumura K, Savage PB (2009) Ceragenin CSA-13 exhibits antimicrobial activity against cariogenic and periodontopathic bacteria. Oral Microbiol Immunol 24:170–172

    Article  PubMed  CAS  Google Scholar 

  30. Leszczyńska K, Namiot A, Fein DE, Wen Q, Namiot Z, Savage PB, Diamond S, Janmey PA, Bucki R (2009) Bactericidal activities of the cationic steroid CSA-13 and the cathelicidin peptide LL-37 against Helicobacter pylori in simulated gastric juice. BMC Microbiol 9:187

    Article  PubMed  Google Scholar 

  31. Graham DY, Shiotani A (2008) New concepts of resistance in the treatment of Helicobacter pylori infections. Nat Clin Pract Gastroenterol Hepatol 5:321–331

    Article  PubMed  CAS  Google Scholar 

  32. Howell MD, Streib JE, Kim BE, Lesley LJ, Dunlap AP, Geng D, Feng Y, Savage PB, Leung DY (2009) Ceragenins: a class of antiviral compounds to treat orthopox infections. J Invest Dermatol 129:2668–2675

    Article  PubMed  CAS  Google Scholar 

  33. Liu DH, Choi S, Chen B, Doerksen RJ, Clements DJ, Winkler JD, Klein ML, DeGrado WF (2004) Nontoxic membrane-active antimicrobial arylamide oligomers. Angew Chem Int Ed 43:1158–1162

    Article  CAS  Google Scholar 

  34. Scott RW, DeGrado WF, Tew GN (2008) De novo designed synthetic mimics of antimicrobial peptides. Curr Opin Biotechnol 19:620–627

    Article  PubMed  CAS  Google Scholar 

  35. Ishitsuka Y, Arnt L, Majewski J, Frey S, Ratajczek M, Kjaer K, Tew GN, Lee KYC (2006) Amphiphilic poly(phenyleneethynylene)s can mimic antimicrobial peptide membrane disordering effect by membrane insertion. J Am Chem Soc 128:13123–13129

    Article  PubMed  CAS  Google Scholar 

  36. Lienkamp K, Madkour AE, Kumar KN, Nüsslein K, Tew GN (2009) Antimicrobial polymers prepared by ring-opening metathesis polymerization: manipulating antimicrobial properties by organic counterion and charge density variation. Chemistry 15:11715–11722

    Article  PubMed  CAS  Google Scholar 

  37. Lienkamp K, Tew GN (2009) Synthetic mimics of antimicrobial peptides–a versatile ring-opening metathesis polymerization based platform for the synthesis of selective antibacterial and cell-penetrating polymers. Chemistry 15:11784–11800

    Article  PubMed  CAS  Google Scholar 

  38. Haug BE, Stensen W, Kalaaij M, Rekdal Ø, Svendsen JS (2008) Synthetic antimicrobial peptidomimetics with therapeutic potential. J Med Chem 51:4306–4314

    Article  PubMed  CAS  Google Scholar 

  39. Flemming K, Klingenberg C, Cavanagh JP, Sletteng M, Stensen W, Svendsen JS, Flaegstad T (2009) High in vitro antimicrobial activity of synthetic antimicrobial peptidomimetics against staphylococcal biofilms. J Antimicrob Chemother 63:136–145

    Article  PubMed  CAS  Google Scholar 

  40. Shalev DE, Rotems S, Fish A, Mor A (2006) Consequences of N-acylation on structure and membrane binding properties of dermaseptin derivative K4–S4-(1–13). J Biol Chem 281:9432–9438

    Article  PubMed  CAS  Google Scholar 

  41. Makovitzki A, Avrahami D, Shai Y (2006) Ultrashort antibacterial and antifungal lipopeptides. Proc Natl Acad Sci USA 103:15997–16002

    Article  PubMed  CAS  Google Scholar 

  42. Vallon-Eberhard A, Makovitzki A, Beauvais A, Latgé JP, Jung S, Shai Y (2008) Efficient clearance of Aspergillus fumigatus in murine lungs by an ultrashort antimicrobial lipopeptide, palmitoyl-Lys-Ala-dAla-Lys. Antimicrob Agents Chemother 52:3118–3126

    Article  PubMed  CAS  Google Scholar 

  43. Laverty G, McLaughlin M, Shaw C, Gorman SP, Gilmore BF (2010) Antimicrobial activity of short, synthetic cationic lipopeptides. Chem Biol Drug Des 75:563–569

    Article  PubMed  CAS  Google Scholar 

  44. Zuckermann RN, Kerr JM, Kent SBH, Moos WH (1992) Efficient method for the preparation of peptoids [oligo(N-substituted glycines)] by submonomer solid-phase synthesis. J Am Chem Soc 114:10646–10647

    Article  CAS  Google Scholar 

  45. Olsen CA (2010) Peptoid–peptide hybrid backbone architectures. Chem Bio Chem 11:152–160

    PubMed  CAS  Google Scholar 

  46. Chongsiriwatana NP, Patch JA, Czyzewski AM, Dohm MT, Ivankin A, Gidalevitz D, Zuckermann RN, Barron AE (2008) Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides. Proc Natl Acad Sci USA 105:2794–2799

    Article  PubMed  CAS  Google Scholar 

  47. Uchida M, McDermott G, Wetzler M, Le Gros MA, Myllys M, Knoechel C, Barron AE, Larabell CA (2009) Soft X-ray tomography of phenotypic switching and the cellular response to antifungal peptoids in Candida albicans. Proc Natl Acad Sci USA 106:19375–19380

    Article  PubMed  CAS  Google Scholar 

  48. Ryge TS, Frimodt-Møller N, Hansen PR (2008) Antimicrobial activities of twenty lysine-peptoid hybrids against clinically relevant bacteria and fungi. Chemotherapy 54:152–156

    Article  PubMed  CAS  Google Scholar 

  49. Schmitt MA, Weisblum B, Gellman SH (2004) Unexpected relationships between structure and function in alpha, beta-peptides: antimicrobial foldamers with heterogeneous backbones. J Am Chem Soc 126:6848–6849

    Article  PubMed  CAS  Google Scholar 

  50. Schmitt MA, Weisblum B, Gellman SH (2007) Interplay among folding, sequence, and lipophilicity in the antibacterial and hemolytic activities of alpha/beta-peptides. J Am Chem Soc 129:417–428

    Article  PubMed  CAS  Google Scholar 

  51. Mowery BP, Lee SE, Kissounko DA, Epand RF, Epand RM, Weisblum B, Stahl SS, Gellman SH (2007) Mimicry of antimicrobial host-defense peptides by random copolymers. J Am Chem Soc 129:15474–15476

    Article  PubMed  CAS  Google Scholar 

  52. Epand RF, Mowery BP, Lee SE, Stahl SS, Lehrer RI, Gellman SH, Epand RM (2008) Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides. J Mol Biol 379:38–50

    Article  PubMed  CAS  Google Scholar 

  53. Li X, Li Y, Han H, Miller DW, Wang G (2006) Solution structures of human LL-37 fragments and NMR-based identification of a minimal membrane-targeting antimicrobial and anticancer region. J Am Chem Soc 128:5776–5785

    Article  PubMed  CAS  Google Scholar 

  54. Mowery BP, Lindner AH, Weisblum B, Stahl SS, Gellman SH (2009) Structure-activity relationships among random nylon-3 copolymers that mimic antibacterial host-defense peptides. J Am Chem Soc 131:9735–9745

    Article  PubMed  CAS  Google Scholar 

  55. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  PubMed  CAS  Google Scholar 

  56. Hale JD, Hancock REW (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther 5:951–959

    Article  PubMed  CAS  Google Scholar 

  57. Cho JH, Kim SC (2010) Non-membrane targets of antimicrobial peptides: novel therapeutic opportunities? In: Wang G (ed) Antimicrobial peptides: discovery, design and novel therapeutic strategies. Oxfordshire, England, pp 128–140

    Chapter  Google Scholar 

  58. Gabriel GJ, Madkour AE, Dabkowski JM, Nelson CF, Nüsslein K, Tew GN (2008) Synthetic mimic of antimicrobial peptide with nonmembrane-disrupting antibacterial properties. Biomacromolecules 9:2980–2983

    Article  PubMed  CAS  Google Scholar 

  59. Hennig A, Gabriel GJ, Tew GN, Matile S (2008) Stimuli-responsive polyguanidino-oxanorbornene membrane transporters as multicomponent sensors in complex matrices. J Am Chem Soc 130:10338–10344

    Article  PubMed  CAS  Google Scholar 

  60. Giuliani A, Pirri G, Nicoletto SF (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Centr Eur J Biol 2:1–33

    Article  CAS  Google Scholar 

  61. Ross NT, Katt WP, Hamilton AD (2010) Synthetic mimetics of protein secondary structure domains. Phil Trans R Soc A 368:989–1008

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

One of the authors declares competing financial interests. Andrea Giuliani is an executive board member and minor shareholder of Spider Biotech S.r.l. (www.spiderbiotech.com), which is developing peptide-based anti-infectives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea C. Rinaldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giuliani, A., Rinaldi, A.C. Beyond natural antimicrobial peptides: multimeric peptides and other peptidomimetic approaches. Cell. Mol. Life Sci. 68, 2255–2266 (2011). https://doi.org/10.1007/s00018-011-0717-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0717-3

Keywords

Navigation