Skip to main content

Synthetic and Structural Routes for the Rational Conversion of Peptides into Small Molecules

  • Protocol
  • First Online:
Computational Peptidology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1268))

Abstract

The demand for modified peptides with improved stability profiles and pharmacokinetic properties is driving extensive research effort in this field. The conversion of peptides into organic molecules, as traditional drugs, is a long and puzzled way. Many and versatile approaches have been described for designing peptide mimetics: the substitution of natural residues with modified amino acids and the rigidification and modification of the backbone are the main structural and chemical routes walked in medicinal chemistry. All of these strategies have been successfully applied to obtain active new compounds in molecular biology, drug discovery and design. Here we propose a panoramic review of the most common methods for the preparation of modified peptides and the most interesting findings of the last decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nestor JJ Jr (2009) The medicinal chemistry of peptides. Curr Med Chem 33:4399–4418

    Google Scholar 

  2. Aloj L, Morelli G (2004) Design synthesis and preclinical evaluation of radiolabeled peptides for diagnosis and therapy. Curr Pharm Des 10:3009–3031

    CAS  PubMed  Google Scholar 

  3. Craik DJ, Fairlie DP, Liras S et al (2013) The future of peptide-based drugs. Chem Biol Drug Des 81:136–147

    CAS  PubMed  Google Scholar 

  4. Hefti FF (2008) Requirements for a lead compound to become a clinical candidate. BMC Neurosci. doi:10.1186/1471-2202-9-S3-S7

    PubMed Central  PubMed  Google Scholar 

  5. Thaker HD, Sgolastra F, Clements D et al (2011) Synthetic mimics of antimicrobial peptides from triaryl scaffolds. J Med Chem 54:2241–2254

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Yang SY (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 15:444–450

    CAS  PubMed  Google Scholar 

  7. Gante J (1994) Peptidomimetics—tailored enzyme inhibitors. Angew Chem Int Ed Engl 33:1699–1720

    Google Scholar 

  8. Marasco D, Perretta G, Sabatella M et al (2008) Past and future perspectives of synthetic peptide libraries. Curr Protein Pept Sci 9:447–467

    CAS  PubMed  Google Scholar 

  9. Scognamiglio PL, Di Natale C, Perretta G et al (2013) From peptides to small molecules: an intriguing but intricated way to new drugs. Curr Med Chem 20:3803–3817

    CAS  PubMed  Google Scholar 

  10. Karle IL (1996) Flexibility in peptide molecules and restraints imposed by hydrogen bonds, the AiB residue, and core inserts. Biopolymers 1:157–180

    Google Scholar 

  11. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 4:95–99

    Google Scholar 

  12. Grauer A, König B (2009) Peptidomimetics—a versatile route to biologically active compounds. Eur J Org Chem 30:5099–5111

    Google Scholar 

  13. Hruby VJ, Li GG, Haskell Luevano C et al (1997) Design of peptides, proteins, and peptidomimetics in chi space. Biopolymers 3:219–266

    Google Scholar 

  14. Komarov IV, Grigorenko AO, Turov AV et al (2004) Conformationally rigid cyclic α-amino acids in the design of peptidomimetics, peptide models and biologically active compounds. Usp Khim 73:849–876

    Google Scholar 

  15. Silverman RB (2004) Drug discovery design and development E7 peptidomimetics. In: Silverman RB (ed) The organic chemistry of drug design and drug action. Elsevier Academic, Evanston, IL, pp 47–50

    Google Scholar 

  16. London N, Movshovitz-Attias D, Schueler-Furman O (2010) The structural basis of peptide-protein binding strategies. Structure 18:188–199

    CAS  PubMed  Google Scholar 

  17. Hruby VJ, Balse PM (2000) Conformational and topographical considerations in designing agonist peptidomimetics from peptide leads. Curr Med Chem 7:945–970

    CAS  PubMed  Google Scholar 

  18. Toniolo C, Goodman M (2003) Introduction to the synthesis of peptidomimetics. In: Goodman M (ed) Methods of organic chemistry: synthesis of peptides and peptidomimetics. Thieme, Stuttgart, NY, pp 1–2

    Google Scholar 

  19. Rochon K, Proteau-Gagné A, Bourassa P et al (2013) Preparation and evaluation at the delta opioid receptor of a series of linear leu-enkephalin analogues obtained by systematic replacement of the amides. ACS Chem Neurosci 4:1204–1216

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Dhanik A, McMurray JS, Kavraki LE (2012) Binding modes of peptidomimetics designed to inhibit STAT3. PLoS One 7:51603

    Google Scholar 

  21. Abdou WM, Barghash RF, Bekheit MS (2012) Carbodiimides in the synthesis of enamino- and α-aminophosphonates as peptidomimetics of analgesic/antiinflammatory and anticancer agents. Arch Pharm 345:884–895

    CAS  Google Scholar 

  22. Ibrahim IAA, Shahzad N, Al-Joudi FS et al (2013) In vitro and in vivo study of effect of α-adrenergic agonist-methyldopa on the serum biochemical laboratory findings. Clin Exp Pharmacol. doi:10.4172/2161-1459.1000136

    Google Scholar 

  23. International Application No. PCT/US98/04254

    Google Scholar 

  24. Gobbo M, Biondi L, Filira F et al (1998) Helix induction potential of N-terminal α-methyl, α-amino acids. Lett Pept Sci 5:105–107

    CAS  Google Scholar 

  25. Choi WT, Duggineni S, Xu Y et al (2012) Targeting the CXC chemokine receptor 4 (CXCR4). J Med Chem 55:977–994

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Fujii N, Oishi S, Hiramatsu K et al (2003) Molecular-size reduction of a potent CXCR4-chemokine antagonist using orthogonal combination of conformation- and sequence-based libraries. Angew Chem Int Ed 42:3251–3253

    CAS  Google Scholar 

  27. Mungalpara J, Thiele S, Eriksen Ø et al (2012) Rational design of conformationally constrained cyclopentapeptide antagonists for C-X-C Chemokine receptor 4 (CXCR4). J Med Chem 55:10287–10291

    CAS  PubMed  Google Scholar 

  28. Zuckermann RN, Kodadek T (2009) Peptoids as potential therapeutics. Curr Opin Mol Ther 11:299–307

    CAS  PubMed  Google Scholar 

  29. Biron E, Kessler H (2005) Convenient synthesis of N-methylamino acids compatible with Fmoc solid-phase peptide synthesis. J Org Chem 70:5183–5189

    CAS  PubMed  Google Scholar 

  30. Miller SM, Simon RJ, Zuckermann RN et al (1995) Comparison of the proteolytic susceptibilities of homologous L-amino acid, D-amino acid, and N-substituted glycine peptide and peptoid oligomers. Drug Dev Res 35:20–32

    CAS  Google Scholar 

  31. Yoo B, Kirshenbaum K (2008) Peptoid architectures: elaboration, actuation, and application. Curr Opin Chem Biol 12:714–721

    CAS  PubMed  Google Scholar 

  32. Armand P, Kirshenbaum K, Goldsmith RA et al (1998) NMR determination of the major solution conformation of a peptoid pentamer with chiral side chains. Proc Natl Acad Sci U S A 95:4309–4314

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Malakoutikhah M, Prades R, Teixidó M et al (2010) N-methyl phenylalanine-rich peptides as highly versatile blood-brain barrier shuttles. J Med Chem 25:2354–2363

    Google Scholar 

  34. Doedens L, Opperer F, Cai M et al (2010) Multiple N-methylation of MT-II backbone amide bonds leads to melanocortin receptor subtype hMC1R selectivity; pharmacological and conformational studies. J Am Chem Soc 132:8115–8128

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Bach AC, Eyermann CJ, Groos JD et al (1994) Structural studies of a family of high affinity ligands for IIb/IIIa. J Am Chem Soc 116:3207–3219

    CAS  Google Scholar 

  36. Li H, Zemel R, Lopes DHJ et al (2012) A two-step strategy for SAR studies of N-methylated Aβ42 C-terminal fragments as Aβ42 toxicity inhibitors. Chem Med Chem 5:515–522

    Google Scholar 

  37. Biron E, Chatterjee J, Ovadia O et al (2008) Improving oral bioavailability of peptides via multiple N-methylation: somatostatin analogs. Angew Chem Int Ed 47:2595–2599

    CAS  Google Scholar 

  38. Ying J, Gu X, Cai M et al (2006) Design, synthesis, and biological evaluation of new cyclic melanotropin peptide analogues selective for the human melanocortin-4 receptor. J Med Chem 49:6888–6896

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Huang Z, He YB, Raynor K et al (1992) Main-chain and side-chain chiral methylated somatostatin analogs: synthesis and conformational analyses. J Am Chem Soc 114:9390–9401

    CAS  Google Scholar 

  40. Tamamura H, Hiramatsu K, Ueda S et al (2005) Stereoselective synthesis of [L-Arg-L/D-3-(2-naphthyl)alanine]-type (E)-alkene dipeptide isosteres and its application to the synthesis and biological evaluation of pseudopeptide analogues of the CXCR4 antagonist FC131. J Med Chem 48:380–391

    CAS  PubMed  Google Scholar 

  41. Mosberg HI, Hurst R, Hruby VJ et al (1983) Bis-penicillamine enkephalins possess highly improved specificity toward delta opioid receptors. Proc Natl Acad Sci U S A 80:5871–5874

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Spear KL, Brown MS, Reinhard EJ et al (1990) Conformational restriction of angiotensin II: cyclic analogues having high potency. J Med Chem 33:1935–1940

    CAS  PubMed  Google Scholar 

  43. Lu Y, Nguyen TM, Weltrowska G (2001) [2′,6′-Dimethyltyrosine]dynorphin A(1-11)-NH2 analogues lacking an N-terminal amino group: potent and selective kappa opioid antagonists. J Med Chem 44:3048–3053

    CAS  PubMed  Google Scholar 

  44. Moussa CEH, Mitrovic AD, Vandenberg RJ (2002) Effects of L-glutamate transport inhibition by a conformationally restricted glutamate analogue (2S,1′S,2′R)-2-(carboxycyclopropyl)glycine (L-CCG III) on metabolism in brain tissue in vitro analysed by NMR spectroscopy. Neurochem Res 27:27–35

    CAS  Google Scholar 

  45. Stewart DE, Sarkar A, Wampler JE (1990) Occurrence and role of cis peptide bonds in protein structures. J Mol Biol 214:253–260

    CAS  PubMed  Google Scholar 

  46. Degenkolb T, Berg A, Gams AW et al (2003) The occurrence of peptaibols and structurally related peptaibiotics in fungi and their mass spectrometric identification via diagnostic fragment ions. J Pept Sci 9:666–678

    CAS  PubMed  Google Scholar 

  47. Olsen BR, Ninomiya Y (1998) Collagens. In: Kreis T, Vale R (eds) Guidebook to the extracellular matrix and adhesion proteins. Oxford University Press, Oxford, p 40

    Google Scholar 

  48. Lubec G, Labudova O, Seebach D et al (1995) Alpha-methyl-proline restores normal levels of bone collagen Type I synthesis in ovariectomized rats. Life Sci 57:2245–2252

    CAS  PubMed  Google Scholar 

  49. Thamm P, Musiol H-J, Moroder L (2003) Synthesis of peptides containing proline analogues. In: Goodman M (ed) Methods of organic chemistry: synthesis of peptides and peptidomimetics. Thieme, Stuttgart, NY, pp 52–86

    Google Scholar 

  50. Bhagwanth S, Mishra RK, Johnson RL (2013) Development of peptidomimetic ligands of Pro-Leu-Gly-NH2 as allosteric modulators of the dopamine D2 receptor. J Org Chem 9:204–214

    CAS  Google Scholar 

  51. Samanen J, Cash T, Narindray D et al (1991) An investigation of angiotensin II agonist and antagonist analogues with 5,5-dimethylthiazolidine-4-carboxylic acid and other constrained amino acids. J Med Chem 34:3036–3043

    CAS  PubMed  Google Scholar 

  52. Adessi C, Soto C (2002) Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr Med Chem 9:963–978

    CAS  PubMed  Google Scholar 

  53. Perni RB, Chandorkar G, Cottrell KM et al (2007) Inhibitors of hepatitis C virus NS3.4A protease. Effect of P4 capping groups on inhibitory potency and pharmacokinetics. Bioorg Med Chem Lett 17:3406–3411

    CAS  PubMed  Google Scholar 

  54. Suzuki M, Sugano H, Matsumoto K et al (1990) Synthesis and central nervous system actions of thyrotropin-releasing hormone analogues containing a dihydroorotic acid moiety. J Med Chem 33:2130–2137

    CAS  PubMed  Google Scholar 

  55. Szpak P (2011) Fish bone chemistry and ultrastructure: implications for taphonomy and stable isotope analysis. J Archaeol Sci 38:3358–3372

    Google Scholar 

  56. Chavan AS, Deng JC, Chuang SC (2013) α(δ′)-Michael addition of alkyl amines to dimethyl (E)-hex-2-en-4-ynedioate: synthesis of α, β-dehydroamino acid derivatives. Molecules 18:2611–2622

    CAS  PubMed  Google Scholar 

  57. Pathak S, Chauhan VS (2011) Rationale-based, de novo design of dehydrophenylalanine-containing antibiotic peptides and systematic modification in sequence for enhanced potency [down-pointing small open triangle]. Antimicrob Agents Chemother 55:2178–2188

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Fisher GH, Berryer P, Ryan JW et al (1981) Dehydrophenylalanyl analogs of bradykinin: synthesis and biological activities. Arch Biochem Biophys 211:269–275

    CAS  PubMed  Google Scholar 

  59. Appella DH, Christianson LA, Karle IL et al (1996) β-peptide foldamers: robust helix formation in a new family of amino acid oligomers. J Am Chem Soc 118:13071–13072

    CAS  Google Scholar 

  60. Gademann K, Hintermann T, Schreiber JV (1999) Beta-peptides: twisting and turning. Curr Med Chem 6:905–925

    CAS  PubMed  Google Scholar 

  61. Weiner B, Szymański W, Janssen DB et al (2010) Recent advances in the catalytic asymmetric synthesis of β-amino acids. Chem Soc Rev 39:1656–1691

    CAS  PubMed  Google Scholar 

  62. Murray JK, Farooqi B, Sadowsky JD et al (2005) Efficient synthesis of a beta-peptide combinatorial library with microwave irradiation. J Am Chem Soc 127:13271–13280

    CAS  PubMed  Google Scholar 

  63. Cheng RP, Gellman SH, DeGrado WF (2001) beta-Peptides: from structure to function. Chem Rev 101:3219–3232

    CAS  PubMed  Google Scholar 

  64. Müller A, Vogt C, Sewald N (2006) Synthesis of Fmoc-β-homoamino acids by ultrasounds-promoted Wolff rearrangement. Synthesis 837–841

    Google Scholar 

  65. Ballet S, Feytens D, De Wachter R et al (2009) Conformationally constrained opioid ligands: the Dmt-Aba and Dmt-Aia vs. Dmt-Tic scaffold. Bioorg Med Chem Lett 19:433–437

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Schiller PW, Nguyen TM, Weltrowska G et al (1993) Differential stereochemical requirements of mu vs. delta opioid receptors for ligand binding and signal transduction: development of a class of potent and highly delta-selective peptide antagonists. Proc Natl Acad Sci U S A 89:11871–11875

    Google Scholar 

  67. Cerminara I, Chiummiento L, Funicello M et al (2012) Heterocycles in peptidomimetics and pseudopeptides: design and synthesis. Pharmaceuticals 5:297–316

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Chiummiento L, Funicello M, Lupattelli P et al (2012) Synthesis and biological evaluation of novel small non peptidic HIV-1PIs: the benzothiophene ring as an effective moiety. Bioorg Med Chem. doi:10.1016/j.bmcl.2012.02.046

    Google Scholar 

  69. Feng W, Zhao Y, Huang W et al (2010) Molecular modeling and biological effects of peptidomimetic inhibitors of TACE activity. J Enzyme Inhib Med Chem 25:459–466

    CAS  PubMed  Google Scholar 

  70. Maletinska L, Spolcova A, Maixnerova J et al (2011) Biological properties of prolactin-releasing peptide analogs with modified aromatic ring of C-terminal phenylalanine amide. Biopolymers 96:481

    Google Scholar 

  71. Findeisen M, Rathmann D, Annette G (2011) RFamide peptides: structure, function, mechanisms and pharmaceutical potential. Pharmaceuticals 4:1248–1280

    CAS  PubMed Central  Google Scholar 

  72. Choudhary A, Raines RT (2011) An evaluation of peptide-bond isosteres. Chembiochem 12:1801–1807

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Stawikowski M, Cudic P (2007) Depsipeptide synthesis. Methods Mol Biol 386:321–339

    CAS  PubMed  Google Scholar 

  74. Hah JM, Martásek P, Roman LJ et al (2003) Aromatic reduced amide bond peptidomimetics as selective inhibitors of neuronal nitric oxide synthase. J Med Chem 46:1661–1669

    CAS  PubMed  Google Scholar 

  75. Li C, Pazgier M, Li J et al (2010) Limitations of peptide retro-inverso isomerization in molecular mimicry. J Biol Chem 18:19572–19581

    Google Scholar 

  76. Edwards JV, Spatola AF, Lemieux C et al (1986) In vitro activity profiles of cyclic and linear enkephalin pseudopeptide analogs. Biochem Biophys Res Commun 136:730–736

    CAS  PubMed  Google Scholar 

  77. Rubini E, Gilon C, Selinger Z et al (1986) Synthesis of isosteric methylene-oxy pseudodipeptide analogues as novel amide bond surrogate units. Tetrahedron 42:6039–6045

    CAS  Google Scholar 

  78. Fields CG, Fields GB (1994) Solvents for solid-phase peptide synthesis. In: Pennington MW, Dunn BM (eds) Peptide synthesis protocols, vol 35, Methods in molecular biology. Humana Press, Inc., Totowa, NJ, pp 29–40

    Google Scholar 

  79. Kazmaier U, Persch A (2010) A straightforward approach towards 5-substituted thiazolylpeptides via the thio-Ugi-reaction. Org Biomol Chem 8:5442–5447

    CAS  PubMed  Google Scholar 

  80. Cressin E, Lloyd AJ, De Pascale G et al (2009) Inhibition of tRNAdependent ligase MurM from Streptococcus pneumonia by phosphonate and sulfonamide inhibitors. Bioorg Med Chem 17:3443–3455

    Google Scholar 

  81. Hoffman RV, Tao J (1997) A simple, stereoselective synthesis of ketomethylene dipeptide isosteres. Tetrahedron 53:7119–7126

    CAS  Google Scholar 

  82. Fletcher MM, Campbell MM (1998) Partially modified retro-inverso peptides: development, synthesis, and conformational behavior. Chem Rev 98:763–796

    CAS  PubMed  Google Scholar 

  83. Crozet Y, Wen JJ, Loo RO et al (1997–1998) Synthesis and characterization of cyclic pseudopeptide libraries containing thiomethylene and thiomethylene-sulfoxide amide bond surrogates. Mol Divers 3:261–276

    Google Scholar 

  84. Rodriguez M, Heitz A, Martinez J (1990) “Carba” peptide bond surrogates: synthesis of Boc-L-Leu-(CH2-CH2)-L-Phe-OH and Boc-L-Leu-ψ-(CH2-CH2)-D-Phe-OH through a horner-emmons reaction. Tetrahedron Lett 30:7319–7322

    Google Scholar 

  85. Pégorier L, Larchevêque M (1995) A general stereocontrolled synthesis of hydroxyethylene dipeptide isosteres. Tetrahedron Lett 36:2753–2756

    Google Scholar 

  86. Norman BH, Kroin JS (1996) Alkylation studies of N-protected-5-substituted morpholin-3-ones. A stereoselective approach to novel methylene ether dipeptide isosteres. J Org Chem 61:4990–4998

    CAS  Google Scholar 

  87. Goodman M (2003) Synthesis of peptides and peptidomimetics. In: Goodman M (ed) Houben-Weyl methods in organic chemistry. Georg Thieme, Stuttgart, NY, pp 101–141

    Google Scholar 

  88. Wipf P, Wang X (2002) Parallel synthesis of oxazolines and thiazolines by tandem condensation-cyclodehydration of carboxylic acids with amino alcohols and aminothiols. J Comb Chem 4:656–660

    CAS  PubMed  Google Scholar 

  89. Angell YL, Burgess K (2007) Peptidomimetics via copper-catalyzed azide-alkyne cycloadditions. Chem Soc Rev 36:1674–1689

    CAS  PubMed  Google Scholar 

  90. Tron GC, Pirali T, Billington RA et al (2008) Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes. Med Res Rev 28:278–308

    CAS  PubMed  Google Scholar 

  91. Lipinski CA (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    CAS  Google Scholar 

  92. White CJ, Yudin AK (2011) Contemporary strategies for peptide macrocyclization. Nat Chem 3:509–524

    CAS  PubMed  Google Scholar 

  93. Hess AD, Colombani PM, Esa AH (1986) Cyclosporine and the immune response: basic aspects. Crit Rev Immunol 6:123–149

    CAS  PubMed  Google Scholar 

  94. Walsh CT (2002) Combinatorial biosynthesis of antibiotics: challenges and opportunities. Chembiochem 3:125–134

    PubMed  Google Scholar 

  95. Thomson AW, Starzl TE (1992) FK 506 and autoimmune disease: perspective and prospects. Autoimmunity 12:303–313

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Gunasekera S, Aboye TL, Madian WA et al (2013) Making ends meet: microwave-accelerated synthesis of cyclic and disulfide rich proteins via in situ thioesterification and native chemical ligation. Int J Pept Res Ther 19:43–54

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Passiouraand T, Suga H (2013) Flexizyme-mediated genetic reprogramming as a tool for noncanonical peptide synthesis and drug discovery. Chemistry 19:6530–6536

    Google Scholar 

  98. http://www.pepscan.com/

  99. http://www.ocerainc.com/technology/match

  100. Blomberg D, Hedenström M, Kreye P et al (2004) Synthesis and conformational studies of a beta-turn mimetic incorporated in Leu-enkephalin. J Org Chem 14:3500–3508

    Google Scholar 

  101. Ressurreiçao ASM, Delatouche R, Gennari C et al (2011) Bifunctional 2,5-diketopiperazines as rigid three-dimensional scaffolds in receptors and peptidomimetics. Eur J Org Chem 2011:217–228

    Google Scholar 

  102. Cluzeau J, Lubell WD (2005) Design, synthesis, and application of azabicyclo[X.Y.O]alkanone amino acids as constrained dipeptide surrogates and peptide mimics. Biopolymers 80:98–150

    CAS  PubMed  Google Scholar 

  103. Whitby LR, Ando Y, Setola V et al (2011) Design, synthesis, and validation of a β-turn mimetic library targeting protein–protein and peptide–receptor interactions. J Am Chem Soc 133:10184–10194

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Goodwin D, Simerska P, Toth I (2012) Peptides as therapeutics with enhanced bioactivity. Curr Med Chem 19:4451–4461

    CAS  PubMed  Google Scholar 

  105. Grauer A, König B (2009) Peptidomimetics—a versatile route to biologically active compounds. Eur J Org Chem 30:5099–5111

    Google Scholar 

  106. Parkinson GN, Wu Y, Fan P et al (1994) Crystal structure and NMR conformation of a cyclic pseudotetrapeptide containing urethane backbone linkages. Biopolymers 34:403–414

    CAS  PubMed  Google Scholar 

  107. Dutta AS, Gormley JJ, McLachlan PF et al (1990) Novel inhibitors of human renin. Cyclic peptides based on the tetrapeptide sequence Glu-D-Phe-Lys-D-Trp. J Med Chem 33:2552–2560

    CAS  PubMed  Google Scholar 

  108. White CJ, Yudin AK (2011) Contemporary strategies for peptide macrocyclization. Nat Chem. doi:10.1038/nchem.1062

    PubMed Central  Google Scholar 

  109. Beck JG, Chatterjee J, Laufer B et al (2012) Intestinal permeability of cyclic peptides: common key backbone motifs identified. J Am Chem Soc 134:12125–12133

    CAS  PubMed  Google Scholar 

  110. Chatterjee J, Gilon C, Hoffman A et al (2008) N-methylation of peptides: a new perspective in medicinal chemistry. Acc Chem Res 41:1331–1342

    CAS  PubMed  Google Scholar 

  111. Hanessian S, Auzzas L (2008) The practice of ring constraint in peptidomimetics using bicyclic and polycyclic amino acids. Acc Chem Res 41:1241–1251

    CAS  PubMed  Google Scholar 

  112. Hruby VJ, Cai M (2013) Design of peptide and peptidomimetic ligands with novel pharmacological activity profiles. Annu Rev Pharmacol Toxicol 53:557–580

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pasqualina Liana Scognamiglio or Daniela Marasco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Scognamiglio, P.L., Morelli, G., Marasco, D. (2015). Synthetic and Structural Routes for the Rational Conversion of Peptides into Small Molecules. In: Zhou, P., Huang, J. (eds) Computational Peptidology. Methods in Molecular Biology, vol 1268. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2285-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2285-7_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2284-0

  • Online ISBN: 978-1-4939-2285-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics