Skip to main content

Peptidomimetics in Medicinal Chemistry: The Art of Transforming Peptides to Drugs

  • Chapter
  • First Online:
Recent Advances in Pharmaceutical Innovation and Research
  • 498 Accesses

Abstract

A peptidomimetic is a small protein-like chain designed to mimic a peptide with adjusted molecular properties such as enhanced stability or biological activity. Small-molecule medicines acting as receptor ligands or enzyme inhibitors are produced using this method. The principles of synthetic methods behind the construction of peptidomimetic bioactive substances are described in this chapter on peptidomimetics. Topics include peptide scaffold-based peptidomimetics, which focuses on design and synthetic considerations, and the introduction and scope of peptidomimetics in chemistry in the synthetic pathway of amino acids. Medicinal chemistry peptidomimetic therapeutic uses and delivery methods are covered in detail. In this chapter, case studies of the design, synthesis and amino acid composition of fullerene-based peptidomimetics as anticancer and hepatoprotective medicines, as well as the analysis of fullerene-based smaller chain peptidomimetics targeting tuberculosis, are concentrated. The entire data analysis focuses on the development of ligands from hit to lead, demonstrating the effective use of peptidomimetics in drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adessi C, Soto C (2002) Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr Med Chem 9:963–978. https://doi.org/10.2174/0929867024606731. PMID: 11966456

    Article  CAS  PubMed  Google Scholar 

  • Arimoto H, Nishimura K, Hayakawa I et al (1999) Multi-valent polymer of vancomycin: enhanced antibacterial activity against VRE. Chem Commun:1361–1362

    Google Scholar 

  • Babu SNN, Rangappa KS (2008) Design, synthesis, antibacterial and antitubercular activity of cationic antimicrobial peptide, ovine Bactenecin5. Ind J Chem 47B:297–304

    CAS  Google Scholar 

  • Bambeke FV (2006) Glycopeptides and glycodepsipeptides in clinical development: a comparative review of their antibacterial spectrum, pharmacokinetics and clinical efficacy. Curr Opin Investig Drug 7:740–749

    Google Scholar 

  • Bauer AW, Kirby WMM, Sherris JC et al (1996) Antibiotic susceptibility testing by standardised single disk method. Am J Clin Pathol 45:493–496

    Article  Google Scholar 

  • Biavasco F, Vignaroli C, Lupidi R et al (1999) In-vitro antibacterial activity of LY 333328, a new semisynthetic glycopeptide. Antimicrob Agents Chemother 41:2165–2172

    Article  Google Scholar 

  • Boado RJ (1995) Antisense drug delivery through the blood-brain barrier. Adv Drug Deliv Rev 15:73–107. PMID: 35524391

    Article  CAS  PubMed  Google Scholar 

  • Boman HG (2003) Antibacterial peptides: basic facts and emerging concepts. J Intern Med 254(3):197–215. https://doi.org/10.1046/j.1365-2796.2003.01228.xH

    Article  CAS  PubMed  Google Scholar 

  • Bridges RJ, Stanley MS, Anderson MW et al (1991) Conformationally defined neurotransmitter analogues. Selective inhibition of glutamate uptake by one pyrrolidine-2,4-dicarboxylate diastereomer. J Med Chem 34:717–725

    Article  CAS  PubMed  Google Scholar 

  • Burger (1995) Burger's medicinal chemistry and drug discovery volume 1, principles and practice. In: Wolff, Manfred E (eds) , vol 72, 5th edn. Wiley, New York, pp 803–861. https://doi.org/10.1021/ed072pa170.3

    Chapter  Google Scholar 

  • Camilio KA, Rekdal O (2014) Short synthetic anticancer peptide andnovel immunotherapeutic agent. Onco Targets Ther 4:315

    Google Scholar 

  • Candiani G, Abbondi M, Borgonovi M et al (1999) In-vitro and in-vivo antibacterial activity of BI 397, a new semisynthetic glycopeptide antibiotic. J Antimicrob Chemother 44:179–192

    Article  CAS  PubMed  Google Scholar 

  • Cappuccino JG, Sherman N (1995) Microbiology-a laboratory manual, 4th edn. The Benjamin Cummings Publishing Co. Inc, San Francisco, CA, pp 21–23

    Google Scholar 

  • Chafee EE, Greisheimer EM (1974) Basic physiology and anatomy, 3rd edn. J B Lippincott Company, Philadelphia, PA, p 505

    Google Scholar 

  • Chanda S, Parekh J (2006) In-vitro antimicrobial activity of some Indian folklore medicinal plants. J Cell Tissue Res 6:577–580

    Google Scholar 

  • Chazov EI, Samirnav VN, Vinegradov VA, et al. (1987) U S Patent US 4698419A

    Google Scholar 

  • Chen H, Yang Z, Ding C, Chu L et al (2013) Discovery of O-alkylamino-tethered niclosamide derivatives as potent and orally bioavailable anticancer agents. ACS Med Chem Lett 4:180–185

    Article  PubMed  PubMed Central  Google Scholar 

  • Choudhary A, Raines RT (2011) An evaluation of peptide-bond Isosteres. Chembiochem 12:1801–1807. https://doi.org/10.1002/cbic.201100272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cirioni O, Giacometti A, Ghiselli R et al (2003) Propylactic efficacy of topical temporin a and RNA III-inhibiting peptide in a subcutaneous rat pouch model of graft infection attributable to staphylococci with intermediate resistance to glycopeptides. Circulation 108:767–771

    Article  CAS  PubMed  Google Scholar 

  • Cooper RD, Snyder NJ, Zweifel MJ et al (1996) Reductive alkylation of glycopeptideantibiotics: synthesis and antibacterial activity. J Antibiot (Tokyo) 49:575–581

    Article  CAS  PubMed  Google Scholar 

  • Curevac AG (2015) Complexes of RNA and cationic peptide for transfaction and for immunostimulation. Korean Patent PCT/EP2007/007702, application Number: 1020107007226, Publication number 2015.04.28

    Google Scholar 

  • Das M, Khanna SK (1997) Clinic-epidemiological, toxicological, and safety evaluation studies on argemone oil. Crit Rev Toxicol 5:273–297

    Article  Google Scholar 

  • Ding PM, Kumar N, Miller CM, Loren M (2013) Structure-based optimization of angiostatic agent 6DBF7, an allosteric antagonist of galectin-1. J Pharmocol Exp Ther 344:3589–3599

    Google Scholar 

  • Edward CM, Cohen MA, Bloom SR (1999) Peptides as drug. QJM 2(92):1–4

    Article  Google Scholar 

  • Ellmann GL (1959) Tissue sulphydryl group. Arch Biochem Biophys 82:70–77

    Article  Google Scholar 

  • Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecules polar surface area as sum of fragment-based contribution and its prediction to the drug transport properties. J Med Chem 43:3714–3717

    Article  CAS  PubMed  Google Scholar 

  • Farmer PS (1980) In: Ariens EJ (ed) Drug design. Academic, New York, pp 119–143

    Chapter  Google Scholar 

  • Gante J (1994) Peptidomimetics—tailored enzyme inhibitors. Angew Chem 33:1699–1720. https://doi.org/10.1002/anie.199416991

    Article  Google Scholar 

  • Ge M, Chen Z, Onishi HR et al (1999) Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding D-ala-D-ala. Science 284:507–511

    Article  CAS  PubMed  Google Scholar 

  • Giannis A, Thomas K (1993) Peptidomimetics for receptor ligands—discovery, development, and medical perspectives. Angew Chem 32:1244–1267. https://doi.org/10.1002/anie.199312441

    Article  Google Scholar 

  • Goldberg AL, Akopian TN, Kisselev AF et al (1997) New insights into marine collagen peptides protect against early alcoholic liver injury in rats. Br J Nutr 107:1160–1166

    Google Scholar 

  • Goldstein BP, Candiani G, Arain TM et al (1995) Antimicrobial activity of MDL 63,246, a new semisynthetic glycopeptide antibiotic. Antimicrob Agents Chemother 39:1580–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grappel SF, Giovenella AJ, Philips L et al (1985) Antimicrobial activity of aridicins, novel glycopeptide antibiotics with high and prolonged levels in blood. Antimicrob Agents Chemother 28:660–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grosdidica A, Zoete V, Micheilin O (2011a) Fast docking using the CHARMM force field with E a dock DSS. J Comput Chem 32:2149–2159

    Article  Google Scholar 

  • Grosdidica A, Zoete V, Micheilin O (2011b) Swiss dock a protein small, molecular docking web service based on E a dock DSS. Nucleic Acids Res 39:270–277

    Article  Google Scholar 

  • Gupta SP (2011) Statistical method, 40th edn. Sultan Chand & Sons, New Delhi, pp 910–929

    Google Scholar 

  • Haiyin HE, Williamson RT, Shen BO et al (2002) Mannopeptimycins, novel antibacterial glycopeptides from Streptomyces hygroscopicus, LL-AC98. J Am Chem Soc 124:9729–9736

    Article  Google Scholar 

  • Hasan S, Daugelat S, Rao PS et al (2006) Prioritizing genomic drug targets in pathogens: application to mycobacterium tuberculosis. PLOS Comput Biol 2:539–550

    Article  CAS  Google Scholar 

  • Hashimoto K, Yamamoto O, Horikawa M et al (1994) Synthesis and neurobiological actions of pyrrolidine-2,3-dicarboxylic acids (PRDA) Conformationally restricted analogues of L-aspartate. Bioorg Med Chem Lett 4:1851–1854

    Article  CAS  Google Scholar 

  • Haubner R, Finsinger D, Kessler H (1997) Stereoisomeric peptide libraries and Peptidomimetics for designing selective inhibitors of the αvβ3 integrin for a new. Cancer Ther 36:1374–1389. https://doi.org/10.1002/anie.199713741

    Article  CAS  Google Scholar 

  • Haura R, Turcic P, Gabricevic M et al (2011) Interaction of α-Melanocortin and its pentapeptide antisense RVKAT: effects on hepatoprotection in male CBA mice. Molecules 16:7331–7343

    Article  Google Scholar 

  • Higgins DL, Chang R, Debabov DV et al (2005) Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 49:1127–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillery AM, Lloyd AW, Swarbrick J (2001) Drug delivery and targeting: for pharmacists and pharmaceutical scientists, 1st edn. CRC, Boca Raton, FL. https://doi.org/10.1201/b12801

    Book  Google Scholar 

  • Hoffmann R, Bulet P, Urge L et al (1999) Range of activity and metabolic stability of synthetic antibacterial glycopeptides from insects. Biochim Biophys Acta 1426:459–467

    Article  CAS  PubMed  Google Scholar 

  • Hossain SM, Easmin S, Islam SM et al (2004) Novel thiocyanato complexes with potent cytotoxic and antimicrobial properties. J Pharm Pharmacol 56:1519–1520

    Article  CAS  PubMed  Google Scholar 

  • Humphrey JM, Bridges RJ, Hart JA et al (1994) 2.3- Pyrrolidinedicarboxyles as neurotransmitter conformer mimics: enantioselective synthesis via chelation-controlled enolate alkylation. J Org Chem 59:2467–2472

    Article  CAS  Google Scholar 

  • Jayaprakash GK, Singh RP, Sakrish KK (2001) Antioxidant activity of grape seed extract on peroxidation model in vitro. J Agric Food Chem 11:1018–1022

    Google Scholar 

  • Jorgensen JH, Redding JS, Maher LA (1989) Antibacterial activity of the new glycopeptide antibiotic SKF 104662. Antimicrob Agents Chemother 33:560–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Judice JK, Pace JL (2003) Semi-synthetic glycopeptide antibacterials. Biorg Med Chem Lett 13:4165–4168

    Article  CAS  Google Scholar 

  • Kafsara M, Tselios T, Deraos S et al (2006) Round and round we go: cyclic peptides in disease. Curr Med Chem 4:2221–2232

    Google Scholar 

  • Kahne D, Leimkuhler C, Lu W et al (2005) Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 105:425–448

    Article  CAS  PubMed  Google Scholar 

  • Khafagy, Morishita M (2012) Oral biodrug using cell penetrating peptides. Adv Drug Deliv Rev 2:531–539

    Article  Google Scholar 

  • Khara JS, Wang Y, Ke XY et al (2014) Anti-mycobacterial activities of synthetic cationic α-helical peptides and their synergism with rifampicin. Biomaterials 35:2032–2038. https://doi.org/10.1016/j.biomaterials.2013.11.035

    Article  CAS  PubMed  Google Scholar 

  • Khatun MS, Hasan MM, Kurata H (2019) Efficient computational model for identification of anti-tubercular peptides by integrating amino acid patterns and properties. FEBS Lett 1873–3468:3029. https://doi.org/10.1002/1873-3468.13536

    Article  CAS  Google Scholar 

  • Kobayashi K, Pillai SK (2003) Applied statistics in toxicology and pharmacology. Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi

    Google Scholar 

  • Langmuir I (1919) Isomorphism, isosterism and covalence. J Am Chem Soc 41(10):1543–1559. https://doi.org/10.1021/ja02231a009

    Article  CAS  Google Scholar 

  • Li XL, Liu JY, Lu R et al (2008) Evaluation of the therapeutic efficacy of tripeptide tyroserleutide (YSL) for human hepatocarcinoma by in-vivo hollow fibre assay. Invest New Drugs 26:525–529

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Opuku AR, Geheeb-keller M et al (1999) Preliminary screening of some traditional zulu medicinal plants for anti-inflammatory and antimicrobial activities. J Ethnopharmacol 68:267–274

    Article  CAS  PubMed  Google Scholar 

  • Lipinski CA, Lomabando DBW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development setting. Adv Drug Deliv Rev 23:4–25

    Article  Google Scholar 

  • Liskamp RMJ (1994) Conformationally restricted amino acids and dipeptides, (non)peptidomimetics and secondary structure mimetics. Recl Trav Chim Pays-Bas 113(1):1–19. https://doi.org/10.1002/recl.19941130102

    Article  CAS  Google Scholar 

  • Marshall GR (1993) A hierarchical approach to peptidomimetic design. Tetrahedron 49(17):3547–3558. https://doi.org/10.1016/s0040-4020(01)90214-5

    Article  CAS  Google Scholar 

  • Martin A and Portaels F (2007) Drug resistance and drug resistance detection, tuberculosis—from basic science to patient care, 1st edn. Brazil, p 643

    Google Scholar 

  • More SS, Nugent J, Vartak AP et al (2017) Hepatoprotective effect of Ψ-Gluthazione in a murine model of acetaminophen induced liver toxicity. Chem Res Toxicol 30:777–784

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan K, Mazumdar A, Ghosh LK (2008) In vitro antioxidant activity alcoholic extract of wrightia tomentosa. Pharmacologyonline 3:196–203

    Google Scholar 

  • Nagarajan K, Singh S, Taleuzzaman M et al (2012) Assessment of antioxidant potency of small chain glycopeptides using DPPH free radical scavenging assay. J Pharm Nutr Sci 2:178–190

    Article  CAS  Google Scholar 

  • Nagarajan K, Taleuzzamman M, Kumar V et al (2014) Antimicrobial glycopeptides: synthesis and antibacterial activity of N-linked and O-linked smaller chain glycopeptides. Drug Res (Stuttg) 64:186–194. https://doi.org/10.1055/s-0033-1354413

    Article  CAS  PubMed  Google Scholar 

  • Nurbo J, Roos AK, Muthas D et al (2007) Design, synthesis and evaluation of peptide inhibitors of mycobacterium tuberculosis ribonucleotide reductase. J Pept Sci 13:822–832. https://doi.org/10.1002/psc.906

    Article  CAS  PubMed  Google Scholar 

  • Olson GL, Bolin DR, Bonner MP et al (1993) Concepts and progress in the development of peptide mimetics. J Med Chem 15(36):3039–3049. https://doi.org/10.1021/jm00073a001. PMID: 8230089

    Article  Google Scholar 

  • Ottolenghi H, Onishi N, Yogi K (1979) Interaction of ascorbica acid and mitochondrial lipids. Arch Biochem Biophys 1:355

    Google Scholar 

  • Panagiota S, Yiannis E (2004) Synthesise of a proline rich [60] fullerene peptide with potential bioactivity. Tetrahedron 60:2823–2822

    Article  Google Scholar 

  • Perrisaud D, Testa B (1982) Hepatic pharmacology: mechanism of action and classification of antinecrotic hepatoprotective agents. Trends Pharmacol Sci 3:365–367

    Article  Google Scholar 

  • Pootoolal J, Thomas MG, Marshall CG et al (2002) Assembling the glycopeptide antibiotic scaff old: the biosynthesis of A47394 from Streptomyces toyocaensis NRRL 15009. Proc Natl Acad Sci 99:8962–8967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabowo SA, Painter H, Zelmer A et al (2019) RUTI vaccination enhances inhibition of mycobacterial growth ex vivo and induces a shift of monocyte phenotype in mice. Front Immunol 10:894. https://doi.org/10.3389/fimmu.2019.00894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis RS, Neves IJ, Lourenco SL et al (2004) Comparison of flow cytometric and Alamar blue tests with the proportional method for testing susceptibility of mycobacterium tuberculosis to rifampin and isoniazid. J Clin Microbiol 42:2247–2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rink R, Arkema A, Baudoin I et al (2010) To protect pharmaceuticals against peptidases. J Pharmacol Toxicol Methods 1:210–218

    Article  Google Scholar 

  • Ripka AS, Rich DH (1998) Peptidomimetic design. Curr Opin Chem Biol 2:441–452. https://doi.org/10.1016/s1367-5931(98)80119-1. PMID: 9736916

    Article  CAS  PubMed  Google Scholar 

  • Ruzin A, Singh G, Severin A et al (2004) Mechanism of action of the mannopeptimycins, a novel class of glycopeptide antibiotics active against vancomycin-resistant gram-positive bacteria. Antimicrob Agents Chemother 48:728–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapakal VD, Shikalgar TS, Ghadge RV et al (2008) In vivo screening of antioxidant profile: a review. J Herb Med Toxicol 2:1–8

    Google Scholar 

  • Saraswat P, Churchard P (2013) Biochemical and histological study of rat liver and kidney injury induced by cisplatin. J Toxicol Pathol 26:293–299

    Article  Google Scholar 

  • Sasaki NA (1999) A novel synthetic protocol for the preparation of enantiopure 3-, 4-, and 5-substituted prolines. Methods Mol Med 23:489–512. https://doi.org/10.1385/0-89603-517-4:489. PMID: 21380915

    Article  CAS  PubMed  Google Scholar 

  • Sato R, Egashira Y, Ono S et al (2013) Identification of hepatoprotective peptide in a wheat gluten hydrolysate against galactosamine induced hepatitis in rats. J Agric Food Chem 61(26):6304–6310

    Article  CAS  PubMed  Google Scholar 

  • Shao C, Zhou W, Zhang S et al (2011) Synthesis and antibacterial activity of N 4 -mono alkyl derivatives of novel glycopeptide LYV07ww01. Biorg Med Chem Lett 21:6732–6738

    Article  CAS  Google Scholar 

  • Smakhtin MYU, Severyanova LA, Konoplya AI et al (2002) Tripeptide Gly-his-Lys is a hepatotropic immunosupressor. Bull Exp Biol Med 133:586–587

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Chapagain M, van Zyl J, Deshpande D, Gumbo T (2021) Potency of vancomycin against mycobacterium tuberculosis in the hollow fiber system model. J Glob Antimicrob Resist 24:403–410. https://doi.org/10.1016/j.jgar.2021.01.005

    Article  CAS  PubMed  Google Scholar 

  • Stahl E (1969) Thin layer chromatography, 2nd edn. Springer, Berlin, p 21

    Book  Google Scholar 

  • Talbot P, Shur BD, Myles DG (2003) Cell adhesion and fertilization: steps in oocyte transport, spermzona pellucida interactions, and sperm egg fusion. Biol Reprod 68(1):1

    Article  CAS  PubMed  Google Scholar 

  • Veber DF, Johnson SR, Cheng HY et al (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Adams ME (1998) Lycotoxins, antimicrobial peptides from venom of the wolf SpiderLycosa carolinensis. J Biol Chem 273:2059–2066. https://doi.org/10.1074/jbc.273.4.2059

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garima Kapoor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagarajan, K., Kapoor, G. (2023). Peptidomimetics in Medicinal Chemistry: The Art of Transforming Peptides to Drugs. In: Singh, P.P. (eds) Recent Advances in Pharmaceutical Innovation and Research. Springer, Singapore. https://doi.org/10.1007/978-981-99-2302-1_9

Download citation

Publish with us

Policies and ethics