Skip to main content

Advertisement

Log in

A comprehensive investigation of Lithium-based polymer electrolytes

  • Review paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polymer electrolytes have caught the attention of next-generation lithium (Li)-based batteries because of their exceptional energy density and safety. Modern society requires efficient and dependable energy storage technologies. Although lithium-based with good performance are utilized in many portable gadgets and electric vehicles (EVs), their potential for utilization is constrained by frequent fires and explosions. We discuss the fundamental properties and description of various polymer electrolytes, such as solid polymer electrolytes (SPEs), gel polymer electrolytes (GPEs), and composite polymer electrolytes, in this article (CPEs). We also describe significant advances in non-aqueous Li-based rechargeable batteries. The obstacles and possibilities for developing innovative polymer electrolytes for high-performance Li-based batteries are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang S, Zhang L, Zeng Q, Liu X, Lai WY, Zhang L (2020) Cellulose microcrystals with brush-like architectures as flexible all-solid-state polymer electrolyte for lithium-ion battery. ACS Sustain Chem Eng 8(8):3200–3207

    Article  CAS  Google Scholar 

  2. Zhang Q, Liu K, Liu K, Zhou L, Ma C, Yaping Du (2020) Imidazole containing solid copolymer electrolyte for lithium-ion conduction and the effect of two lithium salts. Electrochim Acta 351:136342

    Article  CAS  Google Scholar 

  3. Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wan G (2019) Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5(9):2326–2352

  4. Jo YH, Li S, Zuo C, Zhang Y, Gan H, Li S, Yu L, He D, Xie X, Xue Z (2020) Self-healing solid polymer electrolyte facilitated by a dynamic cross-linked polymer matrix for lithium-ion batteries. Macromolecules 53(3):1024–1032

    Article  CAS  Google Scholar 

  5. Xu P, Chen H, Zhou X, Xiang H (2021) Gel polymer electrolyte based on PVDF-HFP matrix composited with rGO-PEG-NH2 for high-performance lithium-ion battery. J Membr Sci 617:118660

    Article  CAS  Google Scholar 

  6. Sun Y, Zhan X, Hu J, Wang Y, Gao S, Shen Y, Cheng YT (2019) Improving ionic conductivity with bimodal-sized Li7La3Zr2O12 fillers for composite polymer electrolytes. ACS Appl Mater Interfaces 11(13):12467–12475

    Article  CAS  PubMed  Google Scholar 

  7. Frech R, York S, Allcock H, Kellam C (2004) Ionic transport in polymer electrolytes: the essential role of associated ionic species. Macromolecules 37(23):8699–8702

    Article  CAS  Google Scholar 

  8. Fortuin BA, Meabe L, Peña SR, Zhang Y, Qiao L, Etxabe J, Garcia L, Manzano H, Armand M, Martínez-Ibañez M, Carrasco J (2023) Molecular-level insight into charge carrier transport and speciation in Solid Polymer Electrolytes by chemically tuning both polymer and Lithium salt. J Phys Chem C 127(4):1955–1964

    Article  CAS  Google Scholar 

  9. Wang H, Sheng L, Yasin G, Wang L, Xu H, He X (2020) Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Storage Mater 33:188–215

    Article  Google Scholar 

  10. Zhao Y, Wang L, Zhou Y, Liang Z, Tavajohi N, Li B, Li T (2021) Solid polymer electrolytes with high conductivity and transference number of Li Ions for Li-Based rechargeable batteries. Adv Sci 8(7):2003675

    Article  CAS  Google Scholar 

  11. Rangasamy VS, Thayumanasundaram S, Locquet JP (2019) Solid polymer electrolytes with poly (vinyl alcohol) and piperidinium-based ionic liquid for Li-ion batteries. Solid State Ion 333:76–82

    Article  CAS  Google Scholar 

  12. Wang F, Li L, Yang X, You J, Xu Y, Wang H, Ma Y, Gao G (2017) Influence of additives in PVDF-base solid polymer electrolyte on conductivity and Li-ion battery performance. Sustain. Energy Fuels 00:1–3

  13. Verma ML, Sahu HD (2017) Study on ionic conductivity and dielectric properties of PEO-based solid nanocomposite polymer electrolytes. Ionics 23(9):2339–2350

    Article  CAS  Google Scholar 

  14. Cha JH, Didwal PN, Kim JM, Chang DR, Park CJ (2019) Poly (ethylene oxide)-based composite solid polymer electrolyte containing Li7La3Zr2O12 and poly (ethylene glycol) dimethyl ether. J Membr Sci 595:117538

    Article  Google Scholar 

  15. Li J, Zhu K, Wang J, Yan K, Liu J, Yao Z, Xu Y (2020) Optimisation of conductivity of PEO/PVDF-based solid polymer electrolytes in all-solid-state Li-ion batteries. Mater Technol 37(4):240–247

    Article  Google Scholar 

  16. Lim YS, Jung HA, Hwang H (2018) Fabrication of PEO-PMMA-LiClO4-based solid polymer electrolytes containing silica aerogel particles for all-solid-state lithium batteries. Energies 11(10):2559

    Article  Google Scholar 

  17. Li J, Zhu L, Xu J, Jing M, Yao S, Shen X, Li S, Tu F (2020) Boosting the performance of poly (ethylene oxide) -based solid polymer electrolytes by blending with poly (vinylidene fluoride‐co‐hexafluoropropylene) for solid‐state lithium‐ion batteries. Int J Energy Res 44(9):7831–7840

    Article  CAS  Google Scholar 

  18. Sengwa RJ, Dhatarwal P (2020) Predominantly chain segmental relaxation dependent ionic conductivity of multiphase semicrystalline PVDF/PEO/LiClO4 solid polymer electrolytes. Electrochim Acta 338:135890

    Article  CAS  Google Scholar 

  19. Zhang Y, Wang X, Feng W, Zhen Y, Zhao P, Li L, Cai Z (2019) The effects of the size and content of BaTiO 3 nanoparticles on solid polymer electrolytes for all-solid-state lithium-ion batteries. J Solid state electric 23:749–758

    Article  Google Scholar 

  20. Zhu L, Li J, Jia Y, Zhu P, Jing M, Yao S, Shen X, Li S, Tu F (2020) Toward high performance solid-state lithium‐ion battery with a promising PEO/PPC blend solid polymer electrolyte. Int J Energy Res 44(13):10168–10178

    Article  CAS  Google Scholar 

  21. Dhatarwal P, Choudhary S, Sengwa RJ (2019) Electrochemical performance of Li+-ion conducting solid polymer electrolytes based on PEO–PMMA blend matrix incorporated with various inorganic nanoparticles for the lithium-ion batteries. Compos Commun 10:11–17

    Article  Google Scholar 

  22. Polu AR, Rhee HW (2017) Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries. Int J Hydrog Energy 42(10):7212–7219

    Article  CAS  Google Scholar 

  23. Vignarooban K, Dissanayake MA, Albinsson I, Mellander BE (2014) Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly (ethylene oxide) (PEO) based solid polymer electrolytes. Solid State Ion 266:25–28

    Article  CAS  Google Scholar 

  24. Sundaramahalingam K, Muthuvinayagam M, Nallamuthu N (2019) AC impedance analysis of lithium ion-based PEO: PVP solid polymer blend electrolytes. Polym Sci 61:565–576

    CAS  Google Scholar 

  25. Sivaraj P, Abhilash KP, Nalini B, Perumal P, Somasundaram K, Selvin PC (2020) Performance enhancement of PVDF/LiCIO 4 based nanocomposite solid polymer electrolytes via incorporation of Li 0.5 La 0.5 TiO 3 nano filler for all-solid-state batteries. 28:739–50

  26. Song X, Ding W, Cheng B, Xing J (2017) Electrospun poly (vinylidene-fluoride)/POSS nanofiber membrane‐based polymer electrolytes for lithium-ion batteries. Polym Compos 38(4):629–636

    Article  CAS  Google Scholar 

  27. Lun P, Chen Z, Zhang Z, Tan S, Chen D (2018) Enhanced ionic conductivity in halloysite nanotube-poly (vinylidene fluoride) electrolytes for solid-state lithium-ion batteries. RSC Adv 8(60):34232–34240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xia Y, Li J, Wang H, Ye Z, Zhou X, Huang H, Gan Y, Liang C, Zhang J, Zhang W (2019) Synthesis and electrochemical performance of poly (vinylidene fluoride)/SiO 2 hybrid membrane for lithium-ion batteries. J Solid State Electrochem 23:519–527

    Article  CAS  Google Scholar 

  29. Francis KM, Subramanian S, Shunmugavel K, Naranappa V, Pandian SS, Nadar SC (2016) Lithium ion-conducting blend polymer electrolyte based on PVA–PAN doped with lithium nitrate. Polym -Plast Technol Mater 55(1):25–35

    Article  CAS  Google Scholar 

  30. Mahant YP, Kondawar SB, Nandanwar DV, Koinkar P (2018) Poly (methyl methacrylate) reinforced poly (vinylidene fluoride) composites electrospun nanofibrous polymer electrolytes as potential separator for lithium-ion batteries. Mater Renew Sustain Energy 7:1–9

    Article  Google Scholar 

  31. Xiao Q, Wang X, Li W, Li Z, Zhang T, Zhang H (2009) Macroporous polymer electrolytes based on PVDF/PEO-b-PMMA block copolymer blends for rechargeable lithium-ion battery. J Membr Sci 334(1–2):117–122

    Article  CAS  Google Scholar 

  32. Mahant YP, Kondawar SB, Bhute M, Nandanwar DV, Electrospun (2015) Poly (vinylidene fluoride)/poly (methyl methacrylate) composite nanofibers polymer electrolyte for batteries. Procedia Mater Sci 10:595–602

    Article  CAS  Google Scholar 

  33. Sivaraj P, Abhilash KP, Nalini B, Perumal P, Selvin PC (2021) Free-standing, high Li-ion conducting hybrid PAN/PVdF/LiClO 4/Li 0.5 La 0.5 TiO 3 nanocomposite solid polymer electrolytes for all-solid-state batteries. J Solid State Electrochem 25:905–917

    Article  CAS  Google Scholar 

  34. Zhong Z, Cao Q, Jing B, Wang X, Li X, Deng H (2012) Electrospun PVdF–PVC nanofibrous polymer electrolytes for polymer lithium-ion batteries. Mater Sci Eng B 177(1):86–91

    Article  CAS  Google Scholar 

  35. Karpagavel K, Sundaramahalingam K, Manikandan A, Vanitha D, Manohar A, Nagarajan ER, Nallamuthu N (2021) Electrical properties of lithium-ion conducting poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)/polyvinylpyrrolidone (PVP) solid polymer electrolyte. J Electron Mater 50(8):4415–4425

    Article  CAS  Google Scholar 

  36. Hsu CY, Liu RJ, Hsu CH, Kuo PL (2016) High thermal and electrochemical stability of PVDF-graft-PAN copolymer hybrid PEO membrane for safety reinforced lithium-ion battery. RSC Adv 6(22):18082–18088

    Article  CAS  Google Scholar 

  37. Tan L, Deng Y, Cao Q, Jing B, Wang X, Liu Y (2019) Gel electrolytes based on polyacrylonitrile/thermoplastic polyurethane/polystyrene for lithium-ion batteries. Ionics 25:3673–3682

    Article  CAS  Google Scholar 

  38. Rajendran S, Sivakumar M, Subadevi R, Nirmala M (2004) Characterization of PVA–PVdF based solid polymer blend electrolytes. Phys B: Condens Matter 348(1–4):73–78

    Article  CAS  Google Scholar 

  39. Liu L, Wang Z, Zhao Z, Zhao Y, Li F, Yang L (2016) PVDF/PAN/SiO 2 polymer electrolyte membrane prepared by combination of phase inversion and chemical reaction method for lithium-ion batteries. J Solid State Electrochem 20:699–712

    Article  CAS  Google Scholar 

  40. Roghanizad F, Rafizadeh M (2015) Ionic conductivity and interfacial resistance of electrospun poly (acrylonitrile)/poly (methyl methacrylate) fibrous membrane-based polymer electrolytes for lithium-ion batteries. Ionics 21:2789–2795

    Article  CAS  Google Scholar 

  41. Yoon HK, Chung WS, Jo NJ (2004) Study on ionic transport mechanism and interactions between salt and polymer chain in PAN based solid polymer electrolytes containing LiCF3SO3. Electrochim Acta 50(2–3):289–293

    Article  CAS  Google Scholar 

  42. Nippani SK, Kuchhal P, Anand G, Kambila VK (2016) Structural, thermal and conductivity studies of PAN-LiBF4 polymer electrolytes. J Eng Sci Technol 11(11):1595–1608

    Google Scholar 

  43. Sadiq M, Sharma AL, Arya A (2016) Optimization of Free-standing Polymer Electrolytes films for Lithium-ion batteries application. Integr Res Advances 5(1):16–20

    Google Scholar 

  44. Pignanelli F, Romero M, Faccio R, Mombrú AW (2017) Experimental and theoretical study of ionic pair dissociation in a lithium ion–linear polyethylenimine–polyacrylonitrile blend for solid polymer electrolytes. J Phys Chem B 121(27):6759–6765

    Article  CAS  PubMed  Google Scholar 

  45. Chen-Yang YW, Chen YT, Chen HC, Lin WT, Tsai CH (2009) Effect of the addition of hydrophobic clay on the electrochemical property of polyacrylonitrile/LiClO4 polymer electrolytes for lithium battery. Polymer 50(13):2856–2862

    Article  CAS  Google Scholar 

  46. Kingslin Mary Genova F, Selvasekarapandian S, Vijaya N, Sivadevi S, Premalatha M, Karthikeyan S (2017) Lithium ion-conducting polymer electrolytes based on PVA–PAN doped with lithium triflate. Ionics 23:2727–2734

    Article  CAS  Google Scholar 

  47. Flora XH, Ulaganathan M, Babu RS, Rajendran S (2012) Evaluation of lithium-ion conduction in PAN/PMMA-based polymer blend electrolytes for Li-ion battery applications. Ionics 18:731–736

    Article  CAS  Google Scholar 

  48. Ramesh S, Ng HM (2011) An investigation on PAN–PVC–LiTFSI based polymer electrolytes system. Solid State Ion 192(1):2–5

    Article  CAS  Google Scholar 

  49. Al-Gunaid MQ, TE S, Al-Ostoot HMG, Basavarajaiah FH S (2020) Optimized nano-perovskite lanthanum cuprate decorated PVA based solid polymer electrolyte. Polym-Plast Technol Mater 59(2):215–229

    CAS  Google Scholar 

  50. Sunitha VR, Kabbur SK, Pavan GS, Sandesh N, Suhas MR, Lalithnarayan C, Laxman N, Radhakrishnan S (2020) Lithium-ion conduction in PVA-based polymer electrolyte system modified with combination of nanofillers. Ionics 26:823–829

    Article  CAS  Google Scholar 

  51. Rajendran S, Sivakumar M, Subadevi R (2003) Effect of salt concentration in poly (vinyl alcohol)-based solid polymer electrolytes. J Power Sources 124(1):225–230

    Article  CAS  Google Scholar 

  52. Jinisha B, Femy AF, Ashima MS, Jayalekshmi S (2018) Polyethylene oxide (PEO)/polyvinyl alcohol (PVA) complexed with lithium perchlorate (LiClO4) as a prospective material for making solid polymer electrolyte films. Mater Today: Proc 5(10):21189–21194

    CAS  Google Scholar 

  53. Sundaramahalingam K, Muthuvinayagam M, Nallamuthu N, Vanitha D, Vahini M (2019) Investigations on lithium acetate-doped PVA/PVP solid polymer blend electrolytes. Polym Bull 76:5577–5602

    Article  CAS  Google Scholar 

  54. Abarna S, Hirankumar G (2019) Vibrational, electrical, dielectric and optical properties of PVA-LiPF solid polymer electrolytes. Mater Sci-Pol 37(3):331–337

    Article  CAS  Google Scholar 

  55. Kim YD, Jo YK, Jo NJ (2012) Electrochemical performance of poly (vinyl alcohol)-based solid polymer electrolyte for lithium polymer batteries.J Nanosci. Nanotechno 12(4):3529–3533

    CAS  Google Scholar 

  56. Rajeswari N, Selvasekarapandian S, Prabu M, Karthikeyan S, Sanjeeviraja C (2013) Lithium ion conducting solid polymer blend electrolyte based on bio-degradable polymers. Bull Mater Sci 36:333–339

    Article  CAS  Google Scholar 

  57. Malathi J, Kumaravadivel M, Brahmanandhan GM, Hema M, Baskaran R, Selvasekarapandian S (2010) Structural, thermal and electrical properties of PVA–LiCF3SO3 polymer electrolyte. J Non-Cryst Solids 356(43):2277–2281

    Article  CAS  Google Scholar 

  58. Amiri H, Mohsennia M (2017) Impedance study of PVA/PEG/LiClO 4/TiO 2 nanocomposite solid polymer blend electrolyte. J Mater Sci Mater 28:4586–4592

    Article  CAS  Google Scholar 

  59. Subramania A, Kalyana Sundaram NT, Vijaya Kumar G, Vasudevan T (2006) New polymer electrolyte based on (PVA–PAN) blend for Li-ion battery applications. Ionics 12:175–178

    Article  CAS  Google Scholar 

  60. Tamilselvi P, Hema M (2014) Conductivity studies of LiCF3SO3 doped PVA: PVdF blend polymer electrolyte. Phys B: Condens Matter 437:53–57

    Article  CAS  Google Scholar 

  61. Tamilselvi P, Hema M (2016) Structural, thermal, vibrational, and electrochemical behavior of lithium ion conducting solid polymer electrolyte based on poly (vinyl alcohol)/poly (vinylidene fluoride) blend. Polym Sci- A 58:776–784

    Article  CAS  Google Scholar 

  62. Liang B, Tang S, Jiang Q, Chen C, Chen X, Li S, Yan X (2015) Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochim Acta 169:334–341

    Article  CAS  Google Scholar 

  63. Dhatarwal P, Sengwa RJ (2018) Influence of solid polymer electrolyte preparation methods on the performance of (PEO–PMMA)–LiBF4 films for lithium-ion battery applications. Polym Bull 75(12):5645–5666

    Article  CAS  Google Scholar 

  64. Sivakumar M, Subadevi R, Rajendran S, Wu NL, Lee JY (2006) Electrochemical studies on [(1 – x) PVA–xPMMA] solid polymer blend electrolytes complexed with LiBF4. Mater Chem Phys 97(2–3):330–336

    Article  CAS  Google Scholar 

  65. Zhong Z, Cao Q, Wang X, Wu N, Wang Y (2012) PVC–PMMA composite electrospun membranes as polymer electrolytes for polymer lithium-ion batteries. Ionics 18:47–53

    Article  CAS  Google Scholar 

  66. Liang B, Jiang Q, Tang S, Li S, Chen X (2016) Porous polymer electrolytes with high ionic conductivity and good mechanical property for rechargeable batteries J. Power Sources 307:320–328

    Article  CAS  Google Scholar 

  67. Sun CC, You AH, Teo LL (2019) Characterizations of PMMA-based polymer electrolyte membranes with Al2O3. J Polym Eng 39(7):612–619

    Article  CAS  Google Scholar 

  68. Jaafar NK, Lepit A, Aini NA, Saat A, Ali AM, Yahya MZ (2011) Effects of lithium salt on chitosan-g-PMMA based polymer electrolytes. Mater Res Innov 15(sup2):s202–205

    Article  Google Scholar 

  69. Yusoff NF, Idris N (2017) Ionic liquid based PVDF/PMMA gel polymer electrolyte for lithium rechargeable battery. J Mech Eng Sci 11:3152–3165

    Article  CAS  Google Scholar 

  70. Prasanna CS, Suthanthiraraj SA (2018) Dielectric and thermal features of zinc ion conducting gel polymer electrolytes (GPEs) containing PVC/PEMA blend and EMIMTFSI ionic liquid. Ionics 24:2631–2646

    Article  CAS  Google Scholar 

  71. Tang J, Muchakayala R, Song S, Wang M, Kumar KN (2016) Effect of EMIMBF4 ionic liquid addition on the structure and ionic conductivity of LiBF4-complexed PVdF-HFP polymer electrolyte films. Polym Test 50:247–254

    Article  CAS  Google Scholar 

  72. Li L, Wang F, Li J, Yang X, You J (2017) Electrochemical performance of gel polymer electrolyte with ionic liquid and PUA/PMMA prepared by ultraviolet curing technology for lithium-ion battery. Int J Hydrog Energy 42(17):12087–12093

    Article  CAS  Google Scholar 

  73. Singh SK, Balo L, Gupta H, Singh VK, Tripathi AK, Verma YL, Singh RK (2018) Improved electrochemical performance of EMIMFSI ionic liquid based gel polymer electrolyte with temperature for rechargeable lithium battery. Energy J 150:890–900

    Article  CAS  Google Scholar 

  74. Singh SK, Gupta H, Balo L, Singh VK, Tripathi AK, Verma YL, Singh RK (2018) Electrochemical characterization of ionic liquid-based gel polymer electrolyte for lithium battery application. Ionics 24:1895–1906

    Article  CAS  Google Scholar 

  75. Li L, Wang J, Yang P, Guo S, Wang H, Yang X, Ma X, Yang S, Wu B (2013) Preparation and characterization of gel polymer electrolytes containing N-butyl-N-methylpyrrolidinium bis (trifluoromethanesulfonic) imide ionic liquid for lithium-ion batteries. Electrochim Acta 88:147–156

    Article  CAS  Google Scholar 

  76. Gupta H, Balo L, Singh VK, Singh SK, Tripathi AK, Verma YL, Singh RK (2017) Effect of temperature on electrochemical performance of ionic liquid-based polymer electrolyte with Li/LiFePO4 electrodes. Solid State Ion 309:192–199

    Article  CAS  Google Scholar 

  77. Zhai W, Zhu HJ, Wang L, Liu XM, Yang H (2014) Study of PVDF-HFP/PMMA blended micro-porous gel polymer electrolyte incorporating ionic liquid [BMIM] BF4 for Lithium-ion batteries. Electrochim Acta 133:623–630

    Article  CAS  Google Scholar 

  78. Ma Y, Li LB, Gao GX, Yang XY, You J, Yang PX (2016) Ionic conductivity enhancement in gel polymer electrolyte membrane with N-methyl-N-butyl-piperidine-bis (trifluoromethyl sulfonyl) imide ionic liquid for lithium-ion battery. Colloids Surf A: Physicochem Eng Asp Aspects 502:130–138

    Article  Google Scholar 

  79. Yang P, Liu L, Li L, Hou J, Xu Y, Ren X, An M, Li N (2014) Gel polymer electrolyte based on polyvinylidenefluoride-co-hexafluoropropylene and ionic liquid for lithium-ion battery. Electrochim Acta 115:454–460

    Article  CAS  Google Scholar 

  80. Yang P, Cui W, Li L, Liu L, An M (2012) Characterization and properties of ternary P (VdF-HFP)-LiTFSI-EMITFSI ionic liquid polymer electrolytes. Solid State Sci 14(5):598–606

    Article  CAS  Google Scholar 

  81. Ravi M, Kim S, Ran F, Kim DS, Lee YM, Ryou MH (2021) Hybrid gel polymer electrolyte based on 1-methyl-1-Propylpyrrolidinium Bis (Trifluoromethanesulfonyl) imide for flexible and shape-variant lithium secondary batteries. J Membr Sci 621:119018

    Article  CAS  Google Scholar 

  82. Rao M, Geng X, Liao Y, Hu S, Li W (2012) Preparation and performance of gel polymer electrolyte based on electrospun polymer membrane and ionic liquid for lithium-ion battery. J Membr Sci 399:37–42

    Article  Google Scholar 

  83. Saikia D, Wu HY, Pan YC, Lin CP, Huang KP, Chen KN, Fey GT, Kao HM (2011) Highly conductive and electrochemically stable plasticized blend polymer electrolytes based on PVdF-HFP and triblock copolymer PPG-PEG-PPG diamine for Li-ion batteries. J Power Sources 196(5):2826–2834

    Article  CAS  Google Scholar 

  84. Kato Y, Hasumi K, Yokoyama S, Yabe T, Ikuta H, Uchimoto Y, Wakihara M (2002) Polymer electrolyte plasticized with PEG-borate ester having high ionic conductivity and thermal stability. Solid State Ion 150(3–4):355–361

    Article  CAS  Google Scholar 

  85. Prabakaran P, Manimuthu RP, Gurusamy S, Sebasthiyan E (2017) Plasticized polymer electrolyte membranes based on PEO/PVdF-HFP for use as an effective electrolyte in lithium-ion batteries. Chin J polym sci 35:407–421

    Article  CAS  Google Scholar 

  86. Gohel K, Kanchan DK (2019) Effect of PC: DEC plasticizers on structural and electrical properties of PVDF–HFP: PMMA based gel polymer electrolyte system. Mater Sci Mater Electron 30:12260–12268

    Article  CAS  Google Scholar 

  87. Dhatarwal P, Sengwa RJ (2020) Dielectric relaxation, Li-ion transport, electrochemical, and structural behaviour of PEO/PVDF/LiClO4/TiO2/PC-based plasticized nanocomposite solid polymer electrolyte films. Compos Commun 17:182–191

    Article  Google Scholar 

  88. Faridi M, Naji L, Kazemifard S, Pourali N (2018) Electrochemical investigation of gel polymer electrolytes based on poly (methyl methacrylate) and dimethylacetamide for application in Li-ion batteries. Chem Pap 72:2289–2300

    Article  CAS  Google Scholar 

  89. Song S, Wang J, Tang J, Muchakayala R, Ma R (2017) Preparation, properties, and Li-ion battery application of EC + PC-modified PVdF-HFP gel polymer electrolyte films. Ionics 23:3365–3375

    Article  CAS  Google Scholar 

  90. Kumar PS, Sakunthala A, Reddy MV, Prabu M (2018) Structural, morphological, electrical and electrochemical study on plasticized PVdF-HFP/PEMA blended polymer electrolyte for lithium polymer battery application. Solid State Ion 319:256–265

    Article  Google Scholar 

  91. Liu W, Zhang XK, Wu F, Xiang Y (2017) A study on PVDF-HFP gel polymer electrolyte for lithium-ion batteries. IOP Conf Ser Mater Sci Eng 213–012036

  92. Jayathilaka PA, Dissanayake MA, Albinsson I, Mellander BE (2003) Dielectric relaxation, ionic conductivity and thermal studies of the gel polymer electrolyte system PAN/EC/PC/LiTFSI. Solid State Ion156(1–2):179–195

    Google Scholar 

  93. Mohammad SK, Rahmat Gul (2012) Studies on PVC-PEO blend polymer electrolytes. Macromolecules 8(2):57–62

  94. Sasikumar M, Jagadeesan A, Raja M, Hari Krishna R, Sivakumar P (2019) The effects of PVAc on surface morphological and electrochemical performance of P (VdF-HFP)-based blend solid polymer electrolytes for lithium ion-battery applications. Ionics 25:2171–2181

    Article  CAS  Google Scholar 

  95. Gohel K, Kanchan DK, Machhi HK, Soni SS, Maheshwaran C (2020) Gel polymer electrolyte based on PVDF-HFP: PMMA incorporated with propylene carbonate (PC) and diethyl carbonate (DEC) plasticizers: Electrical, morphology, structural and electrochemical properties. Mater Res Express 7(2):025301

    Article  CAS  Google Scholar 

  96. Kesavan K, Mathew CM, Rajendran S (2014) Lithium-ion conduction and ion-polymer interaction in poly (vinyl pyrrolidone) based electrolytes blended with different plasticizers. Chin Chem Lett 25(11):1428–1434

    Article  CAS  Google Scholar 

  97. Rajendran S, Sivakumar P (2008) An investigation of PVdF/PVC-based blend electrolytes with EC/PC as plasticizers in lithium battery applications. Phys B Condens 403(4):509–516

    Article  CAS  Google Scholar 

  98. Pal P, Ghosh A (2018) Influence of TiO2 nano-particles on charge carrier transport and cell performance of PMMA-LiClO4 based nano-composite electrolytesElectrochim. Acta 260:157–167

    CAS  Google Scholar 

  99. Hema M, Tamilselvi P (2016) Lithium ion conducting PVA: PVdF polymer electrolytes doped with nano SiO2 and TiO2 filler. J Phys Chem Solids 96:42–48

    Article  Google Scholar 

  100. Aadheeshwaran S, Sankaranarayanan K, Ganesh V (2020) Fluoropolymer/ceramic matrix as a polymer electrolyte in Li-ion batteries: a case study on the influence of polyether into PVdF/BaTiO 3 matrix via immersion precipitation. Ionics 27:607–617

    Article  Google Scholar 

  101. Verma ML, Minakshi M, Singh NK (2014) Structural and electrochemical properties of nanocomposite polymer electrolyte for electrochemical devices. Ind Eng Chem Res 53(39):14993–15001

    Article  CAS  Google Scholar 

  102. Xiao W, Wang Z, Zhang Y, Fang R, Yuan Z, Miao C, Yan X, Jiang Y (2018) Enhanced performance of P (VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium-ion batteries. J PowerSources 382:128–134

    CAS  Google Scholar 

  103. Xiao W, Gong Y, Wang H, Zhao L, Liu J, Yan C (2014) Preparation and electrochemical performance of ZrO2 nanoparticle-embedded nonwoven composite separator for lithium-ion batteries. Ceram Int 41(10):14223–14229

    Article  Google Scholar 

  104. Wang YJ, Kim D (2007) Crystallinity, morphology, mechanical properties and conductivity study of in situ formed PVdF/LiClO4/TiO2 nanocomposite polymer electrolytes. Electrochim Acta 52(9):3181–3189

    Article  CAS  Google Scholar 

  105. Chen HC, Lin FJ, Chen CC (2002) Polyacrylonitrile electrolytes 1. A novel high-conductivity composite polymer electrolyte based on PAN, LiClO 4 and a-Al 2 O 3. Solid State Ion 150:327–335

    Article  Google Scholar 

  106. Shanmukaraj D, Wang GX, Liu HK, Murugan R (2008) Synthesis and characterization of SrBi 4 Ti 4 O 15 ferroelectric filler based composite polymer electrolytes for lithium-ion batteries. Polym Bull 60:351–361

    Article  CAS  Google Scholar 

  107. Sasikumar M, Raja M, Krishna RH, Jagadeesan A, Sivakumar P, Rajendran S (2008) Influence of hydrothermally synthesized cubic-structured BaTiO3 ceramic fillers on ionic conductivity, mechanical integrity, and thermal behavior of P (VDF–HFP)/PVAc-based composite solid polymer electrolytes for lithium-ion batteries. J Phys Chem C 122(45):25741–25752

    Article  Google Scholar 

  108. Patil SU, Yawale SS, Yawale SP (2014) Conductivity study of PEO-LiClO4 polymer electrolyte doped with ZnO nanocomposite ceramic filler. Bull Mater Sci 37(6):1403–1409

    Article  CAS  Google Scholar 

  109. Padmaraj O, Venkateswarlu M, Satyanarayana N (2013) Effect of ZnO filler concentration on the conductivity, structure and morphology of PVdF-HFP nanocomposite solid polymer electrolyte for lithium battery application. Ionics 19:1835–1842

    Article  CAS  Google Scholar 

  110. Pal P, Ghosh A (2018) Influence of TiO2 nano-particles on charge carrier transport and cell performance of PMMA-LiClO4 based nano-composite electrolytes. Electrochim Acta 260:157–167

    Article  CAS  Google Scholar 

  111. Sasikumar M, Krishna RH, Raja M, Therese HA, Balakrishnan NT, Raghavan P, Sivakumar P (2021) Titanium dioxide nano-ceramic filler in solid polymer electrolytes: strategy towards suppressed dendrite formation and enhanced electrochemical performance for safe lithium-ion batteries. J Alloys Compd 882:160709

    Article  CAS  Google Scholar 

  112. Tan X, Wu Y, Tang W, Song S, Yao J, Wen Z, Lu L, Savilov SV, Hu N, Molenda J (2020) Preparation of nanocomposite polymer electrolyte via in situ synthesis of SiO2 nanoparticles in PEO. Nanomaterials 10(1):157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hu J, Wang W, Zhou B, Feng Y, Xie X, Xue Z (2019) Poly (ethylene oxide)-based composite polymer electrolytes embedding with ionic bond modified nanoparticles for all-solid-state lithium-ion battery. J Membr Sci 575:200–208

    Article  CAS  Google Scholar 

  114. Sabrina Q, Sohib A, Lestariningsih T, Ratri CR (2019) The effect of (TiO2 and SiO2) nano-filler on solid polymer electrolyte based LiBOB. J Phys Conf 1191:012028

    Article  CAS  Google Scholar 

  115. Yu X, Manthiram A (2021) A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater 34:282–300

    Article  Google Scholar 

  116. Fu J, Li Z, Zhou X, Guo X (2022) Ion transport in composite polymer electrolytes. Mater Adv 3:3809–3819

    Article  CAS  Google Scholar 

  117. Yang H, Wu N (2022) Ionic conductivity and ion transport mechanisms of solid-state lithium‐ion battery electrolytes: a review. Energy Sci Eng 10(5):1643–1671

    Article  CAS  Google Scholar 

  118. Pitawala HM, Dissanayake MA, Seneviratne VA, Mellander BE, Albinson I (2008) Effect of plasticizers (EC or PC) on the ionic conductivity and thermal properties of the (PEO) 9 LiTf: Al 2 O 3 nanocomposite polymer electrolyte systemJ. Solid State Electrochem 12:783–789

    Article  CAS  Google Scholar 

  119. Lee JM, Kim T, Baek SW, Aihara Y, Park Y, Kim YI, Doo SG (2014) High lithium-ion conductivity of Li7La3Zr2O12 synthesized by solid state reaction. Solid State Ion 258:13–17

    Article  CAS  Google Scholar 

  120. Xu H, Zhang X, Jiang J, Li M, Shen Y (2020) Ultrathin Li7La3Zr2O12@ PAN composite polymer electrolyte with high conductivity for all-solid-state lithium-ion battery. Solid State Ion 347:115227

    Article  CAS  Google Scholar 

  121. Huang Y, Zhang Z, Gao H, Huang J, Li C (2020) Li1. 5Al0. 5Ti1. 5(PO4)3 enhanced polyethylene oxide polymer electrolyte for all-solid-state lithium batteries. Solid State Ion 356:115437

    Article  CAS  Google Scholar 

  122. Zhang X, Xu BQ, Lin YH, Shen Y, Li L, Nan CW (2018) Effects of Li6. 75La3Zr1. 75Ta0. 25O12 on chemical and electrochemical properties of polyacrylonitrile-based solid electrolytes. Solid State Ion 327:32–38

    Article  CAS  Google Scholar 

  123. Wang YJ, Pan Y, Kim D (2006) Conductivity studies on ceramic Li1. 3Al0. 3Ti1. 7 (PO4) 3-filled PEO-based solid composite polymer electrolytes. J Power Sources 159(1):690–701

    Article  CAS  Google Scholar 

  124. Gao L, Li J, Ju J, Cheng B, Kang W, Deng N (2020) Polyvinylidene fluoride nanofibers with embedded Li6. 4La3Zr1. 4Ta0. 6O12 fillers modified polymer electrolytes for high-capacity and long-life all-solid-state lithium metal batteries. Compos Sci Technol 200:108408

    Article  CAS  Google Scholar 

  125. Zhang W, Wang X, Zhang Q, Wang L, Xu Z, Li Y, Huang S (2020) Li7La3Zr2O12 ceramic nanofiber-incorporated solid polymer electrolytes for flexible lithium batteries. ACS Appl Energy Mater 3(6):5238–5246

    Article  CAS  Google Scholar 

  126. Wu M, Liu D, Qu D, Xie Z, Li J, Lei J, Tang H (2020) 3D coral-like LLZO/PVDF composite electrolytes with enhanced ionic conductivity and mechanical flexibility for solid-state lithium batteries. ACS Appl Mater Interfaces 12(47):52652–52659

    Article  CAS  PubMed  Google Scholar 

  127. Pareek T, Dwivedi S, Ahmad SA, Badole M, Kumar S (2020) Effect of NASICON-type LiSnZr (PO4) 3 ceramic fillers on the ionic conductivity and electrochemical behavior of PVDF based composite electrolyte. J Alloys Compd 824:153991

    Article  CAS  Google Scholar 

  128. Zhao E, Guo Y, Xin Y, Xu G, Guo X (2021) Enhanced electrochemical properties and interfacial stability of poly (ethylene oxide) solid electrolyte incorporating nanostructured Li1. 3Al0. 3Ti1. 7 (PO4) 3 fillers for all solid-state lithium-ion batteries. Int J Energy Res 45(5):6876–6887

    Article  CAS  Google Scholar 

  129. Wang Y, Liu T, Liu C, Liu G, Yu J, Zou Q (2022) Solid-state lithium battery with garnet Li7La3Zr2O12 nanofibers composite polymer electrolytes. Solid State Ion 378:115897

    Article  CAS  Google Scholar 

  130. Zha W, Chen F, Yang D, Shen Q, Zhang L (2018) High-performance Li6. 4La3Zr1. 4Ta0. 6O12/Poly (ethylene oxide)/Succinonitrile composite electrolyte for solid-state lithium batteries. J Power Sources 397:87–94

    Article  CAS  Google Scholar 

  131. Yu X, Manthiram A (2020) A long cycle life, all-solid-state lithium battery with a ceramic–polymer composite electrolyte. ACS Appl Energy Mater (3):2916–2924

  132. Dai J, Fu K, Gong Y, Song J, Chen C, Yao Y, Pastel G, Zhang L, Wachsman E, Hu L (2019) Flexible solid-state electrolyte with aligned nanostructures derived from wood. ACS Mater Lett 1(3):354–361

    Article  CAS  Google Scholar 

  133. Cheng SH, He KQ, Liu Y, Zha JW, Kamruzzaman M, Ma RL, Dang ZM, Li RK, Chung CY (2017) Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte. Electrochim Acta 253:430–438

    Article  CAS  Google Scholar 

  134. Saal A, Hagemann T, Schubert US (2021) Polymers for battery applications—active materials, membranes, and binders. Adv Energy Mater 11(43):2001984

    Article  CAS  Google Scholar 

  135. Karuppasamy K, Antony R, Alwin S, Balakumar S, Sahaya Shajan X (2015) A review on PEO based solid polymer electrolytes (SPEs) complexed with LiX (X = tf, BOB) for rechargeable lithium-ion batteries. Mater Sci Forum 807:41–63

    Article  Google Scholar 

  136. Wang SX, Yap CC, He J, Chen C, Wong SY, Li X (2016) Electrospinning A facile technique for fabricating functional nanofibers for environmental applications. Nanatechnol Reviews 5(1):51–73

    Google Scholar 

  137. Pavlidou S, Papaspyrides CD (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198

    Article  CAS  Google Scholar 

  138. Erceg M, Jozić D, Banovac I, Perinović S, Bernstorff S (2014) Preparation and characterization of melt intercalated poly (ethylene oxide)/lithium montmorillonite nanocomposites. Thermochimica acta 579:86–92

    Article  CAS  Google Scholar 

  139. Park CH, Park M, Yoo SI, Joo SK (2006) A spin-coated solid polymer electrolyte for all-solid-state rechargeable thin-film lithium polymer batteries. J Power Sources 158(2):1442–1446

    Article  CAS  Google Scholar 

  140. Norrman K, Ghanbari-Siahkali A, Larsen NB (2005) 6 Studies of spin-coated polymer films. Annual Reports Section” C“(Physical Chemistry) 101:174–201

  141. Krebs FC (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energy Mater Sol Cells 93(4):394–412

    Article  CAS  Google Scholar 

  142. Brinker CJ, Frye GC, Hurd AJ, Ashley CS (1991) Fundamentals of sol-gel dip coating. Thin Solid Films 201(1):97–108

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude and sincere appreciation to the Vellore Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Vijayachamundeeswari.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationsships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagan, M., Vijayachamundeeswari, S. A comprehensive investigation of Lithium-based polymer electrolytes. J Polym Res 30, 250 (2023). https://doi.org/10.1007/s10965-023-03623-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03623-8

Keywords

Navigation