Skip to main content

Advertisement

Log in

Fluoropolymer/ceramic matrix as a polymer electrolyte in Li-ion batteries: a case study on the influence of polyether into PVdF/BaTiO3 matrix via immersion precipitation

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The influence of polyether compound on the preparation of composite polymer electrolyte (CPE) membrane based on poly(vinylidene difluoride) (PVdF) matrix via spinning cum immersion precipitation technique is investigated with different weight ratios of polyethylene glycol (PEG-6000). The addition of polyether compound into the composite polymer matrix is found to improve the physico-chemical properties such as porosity, electrolyte absorption, and ionic conductivity of the resultant membranes. The maximum ionic conductivity of the fabricated PVdF(80%)/PEG(10%)/BaTiO3(5%) based LiFePO4|B2-CPE|Li system is determined to be 9.4 mS cm−1 at room temperature that is favorable for exhibiting good electrochemical performances. The Li+ transference number is computed to be 0.23 for B2 composite polymer electrolyte based symmetric cell. At 0.2C rate, the LiFePO4|B2-CPE|Li cell showed a good discharge capacity of 144.3 mAh g−1 and improved the capacity retention up to 98.4% after 50 cycles. The findings suggest that the porous composite PVdF electrolyte is a promising candidate for lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176. https://doi.org/10.1021/ja3091438

    Article  CAS  PubMed  Google Scholar 

  2. Arunkumar R, Saroja APVK, Sundara R (2019) Barium titanate-based porous ceramic flexible membrane as a separator for room-temperature sodium-ion battery. ACS Appl Mater Interfaces 11:3889–3896. https://doi.org/10.1021/acsami.8b17887

    Article  CAS  Google Scholar 

  3. Gayathri R, Prabhu MR (2020) Protonated state and synergistic role of Nd3+ doped barium cerate perovskite for the enhancement of ionic pathways in novel sulfonated polyethersulfone for H2/O2 fuel cells. Soft Matter 16(17):4220–4233. https://doi.org/10.1039/D0SM00427H

    Article  CAS  PubMed  Google Scholar 

  4. Yanilmaz M, Chen C, Zhang X (2013) Fabrication and characterization of SiO2/PVDF composite nanofiber-coated PP nonwoven separators for lithium-ion batteries. J Polym Sci B: Polym Phys 51:1719–1726. https://doi.org/10.1002/polb.23387

    Article  CAS  Google Scholar 

  5. Hariprasad R, Vinothkannan M, Kim AR, Yoo DJ (2019) SPVdF-HFP/SGO nanohybrid proton exchange membrane for the applications of directmethanol fuel cells. J Dispersion Sci Technol 1-13. https://doi.org/10.1080/01932691.2019.1660672

  6. Wang L, Wang Z, Sun Y, Liang X, Xiang H (2019) Sb2O3 modified PVdF-CTFE electrospun fibrous membrane as a safe lithium-ion battery separator. J Membr Sci 572:512–519. https://doi.org/10.1016/j.memsci.2018.11.041

    Article  CAS  Google Scholar 

  7. Jiang X, Zhu X, Ai X, Yang H, Cao Y (2017) Novel ceramic-grafted separator with highly thermal stability for safe lithium-ion batteries. ACS Appl Mater Interfaces 9:25970–25975. https://doi.org/10.1021/acsami.7b05535

    Article  CAS  PubMed  Google Scholar 

  8. Angulakshmi N, Yoo DJ, Nahm KS, Gerbaldi C, Stephan AM (2014) MgAl2SiO6-incorporated poly (ethylene oxide)-based electrolytes for all-solid-state lithium batteries. Ionics 20(2):151–156. https://doi.org/10.1007/s11581-013-0985-z

    Article  CAS  Google Scholar 

  9. Ranjani M, Yoo DJ (2018) Sulfonated Fe3O4@SiO2 nanorods incorporated sPVdF nanocomposite membranes for DMFC applications. J Membr Sci 555:497–506. https://doi.org/10.1016/j.memsci.2018.03.049

    Article  CAS  Google Scholar 

  10. Rana D, Mandal BM, Bhattacharyya SN (1996) Analogue calorimetry of polymer blends: poly (styrene-co-acrylonitrile) and poly (phenyl acrylate) or poly (vinyl benzoate). Polymer 37(12):2439–2443. https://doi.org/10.1016/0032-3861(96)85356-0

    Article  CAS  Google Scholar 

  11. Rana D, Mandal BM, Bhattacharyya SN (1993) Miscibility and phase diagrams of poly (phenyl acrylate) and poly (styrene-co-acrylonitrile) blends. Polymer 34(7):1454–1459. https://doi.org/10.1016/0032-3861(93)90861-4

    Article  CAS  Google Scholar 

  12. Shim J, Lee JS, Lee JH, Kim HJ, Lee JC (2016) Gel polymer electrolytes containing anion-trapping boron moieties for lithium-ion battery applications. ACS Appl Mater Interfaces 8(41):27740–27752. https://doi.org/10.1021/acsami.6b09601

    Article  CAS  PubMed  Google Scholar 

  13. Zhang J, Sun B, Huang X, Chen S, Wang G (2014) Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Sci Rep 4:1–7. https://doi.org/10.1038/srep06007

    Article  CAS  Google Scholar 

  14. Lee EJ, Park KH, Lee YH, Kim KG, Jeong YU, Kim SY, Kim HD (2017) Poly (urethane acrylate)‐based gel polymer films for mechanically stable, transparent, and highly conductive polymer electrolyte applications. J Appl Polym Sci 134(26): 45009. https://doi.org/10.1002/app.45009

  15. Deng F, Wang X, He D, Hu J, Gong C, Ye YS, Xie X, Xue Z (2015) Microporous polymer electrolyte based on PVdF/PEO star polymer blends for lithium ion batteries. J Membr Sci 491:82–89. https://doi.org/10.1016/j.memsci.2015.05.021

    Article  CAS  Google Scholar 

  16. Zhao M, Zuo X, Ma X, Xiao X, Liu J, Nan J (2017) Self-supported PVdF/P(VC-VAc) blended polymer electrolytes for LiNi0.5Mn1.5O4/Li batteries. J Membr Sci 532:30–37. https://doi.org/10.1016/j.memsci.2017.03.009

    Article  CAS  Google Scholar 

  17. Zhong Z, Cao Q, Jing B, Wang X, Li X, Deng H (2012) Electrospun PVdF-PVC nanofibrous polymer electrolytes for polymer lithium-ion batteries. Mater Sci Eng B 177(1):86–91. https://doi.org/10.1016/j.mseb.2011.09.008

    Article  CAS  Google Scholar 

  18. Boudin F, Andrieu X, Jehoulet C, Olsen II (1999) Microporous PVdF gel for lithium-ion batteries. J Power Sources 81:804–807. https://doi.org/10.1016/S0378-7753(99)00154-8

    Article  Google Scholar 

  19. Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X (2014) A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci 7(12):3857–3886. https://doi.org/10.1039/C4EE01432D

    Article  CAS  Google Scholar 

  20. Jana KK, Lue SJ, Huang A, Soesanto JF, Tung KL (2018) Separator membranes for high energy-density batteries. Chem Biol Eng Rev 5(6):346–371. https://doi.org/10.1007/s10008-020-04842-5

    Article  CAS  Google Scholar 

  21. Raghavan P, Choi JW, Ahn JH, Cheruvally G, Chauhan GS, Ahn HJ, Nah C (2008) Novel electrospun poly(vinylidene fluoride-Co-hexafluoropropylene)- in situ SiO2 composite membrane-based polymer electrolyte for Lithium batteries. J Power Sources 184(2):437–443. https://doi.org/10.1016/j.jpowsour.2008.03.027

    Article  CAS  Google Scholar 

  22. Li W, Xing Y, Xing X, Li Y, Yang G, Xu L (2013) PVdF-based composite microporous gel polymer electrolytes containing a novel single ionic conductor SiO2 (Li+). Electrochim Acta 112:183–190. https://doi.org/10.1016/j.electacta.2013.08.179

    Article  CAS  Google Scholar 

  23. Shanthi PM, Hanumantha PJ, Albuquerque T, Gattu B, Kumta PN (2018) Novel composite polymer electrolytes of PVdF-HFP derived by electrospinning with enhanced Li-ion conductivities for rechargeable lithium–sulfur batteries. ACS Appl Energy Mater 1(2):483–494. https://doi.org/10.1021/acsaem.7b00094

    Article  CAS  Google Scholar 

  24. Li B, Su Q, Yu L, Wang D, Ding S, Zhang M, Du G, Xu B (2019) Li0.35La0.55TiO3 nanofibers enhanced poly(vinylidene fluoride)-based composite polymer electrolytes for all-solid-state batteries. ACS Appl Mater Interfaces 11(45):42206–42213. https://doi.org/10.1021/acsami.9b14824

    Article  CAS  PubMed  Google Scholar 

  25. Sun Y, Zhan X, Hu J, Wang Y, Gao S, Shen Y, Cheng YT (2019) Improving ionic conductivity with bimodal-sized Li7La3Zr2O12 fillers for composite polymer electrolytes. ACS Appl Mater Interfaces 11(13):12467–12475. https://doi.org/10.1021/acsami.8b21770

    Article  CAS  PubMed  Google Scholar 

  26. Safanama D, Sharma N, Rao RP, Brand HE, Adams S (2016) Structural evolution of NASICON-type Li1+xAlxGe2−x(PO4)3 using in situ synchrotron X-ray powder diffraction. J Mater Chem A 4(20):7718–7726. https://doi.org/10.1039/C6TA00402D

    Article  CAS  Google Scholar 

  27. Raghavan P, Zhao X, Kim JK, Manuel J, Chauhan GS, Ahn JH, Nah C (2008) Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly (vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers. Electrochim Acta 54(2):228–234. https://doi.org/10.1016/j.electacta.2008.08.007

    Article  CAS  Google Scholar 

  28. Costa CM, Silva MM, Lanceros-Mendez S (2013) Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications. RSC Adv 3(29):11404–11417. https://doi.org/10.1039/C3RA40732B

    Article  CAS  Google Scholar 

  29. Wongchitphimon S, Wang R, Jiraratananon R, Shi L, Loh CH (2011) Effect of polyethylene glycol (PEG) as an additive on the fabrication of polyvinylidene fluoride-co-hexafluropropylene (PVdF-HFP) asymmetric microporous hollow fiber membranes. J Membr Sci 369:329–338. https://doi.org/10.1016/j.memsci.2010.12.008

    Article  CAS  Google Scholar 

  30. Wang YP, Gao XH, Li HK, Li HJ, Liu HG, Guo HX (2009) Effect of active filler addition on the ionic conductivity of PVdF-PEG polymer electrolyte. J Macro Sci A: Pure Appl Chem 46:461–467. https://doi.org/10.1080/10601320902740277

    Article  CAS  Google Scholar 

  31. Rana D, Mandal BM, Bhattacharyya SN (1996) Analogue calorimetric studies of blends of poly(vinylester)s and polyacrylates. Macromolecules 29(5):1579–1583. https://doi.org/10.1021/ma950954n

    Article  CAS  Google Scholar 

  32. Rana D, Bag K, Bhattacharyya SN, Mandal BM (2000) Miscibility of poly (styrene-co-butyl acrylate) with poly (ethyl methacrylate): existence of both UCST and LCST. J Polym Sci B Polym Phys 38(3):369–375. https://doi.org/10.1002/(SICI)1099-0488(20000201)38:3%3C369::AID

    Article  CAS  Google Scholar 

  33. Folgado E, Ladmiral V, Semsarilar M (2020) Towards permanent hydrophilic PVDF membranes. Amphiphilic PVDF-b-PEG-b-PVDF triblock copolymer as membrane additive. Eur Polym J 109708:109708. https://doi.org/10.1016/j.eurpolymj.2020.109708

    Article  CAS  Google Scholar 

  34. Liu B, Huang Y, Cao H, Zhao L, Huang Y, Song A, Lin Y, Li X, Wang MA (2018) Novel porous gel polymer electrolyte based on poly(acrylonitrile-polyhedral oligomeric silsesquioxane) with high performances for Lithium-ion batteries. J Membr Sci 545:140–149. https://doi.org/10.1016/j.memsci.2017.09.077

    Article  CAS  Google Scholar 

  35. Zhao L, Fu J, Du Z, Jia X, Qu Y, Yu F, Du J, Chen Y (2020) High-strength and flexible cellulose/PEG based gel polymer electrolyte with high performance for lithium ion batteries. J Membr Sci 593:117428. https://doi.org/10.1016/j.memsci.2019.117428

    Article  CAS  Google Scholar 

  36. Yang CL, Li ZH, Li WJ, Liu HY, Xiao QZ, Lei GT, Ding YH (2015) Batwing-like polymer membrane consisting of PMMA-grafted electrospun PVdF-SiO2 nanocomposite fibers for lithium-ion batteries. J Membr Sci 495:341–350. https://doi.org/10.1016/j.memsci.2015.08.036

    Article  CAS  Google Scholar 

  37. Fasciani C, Panero S, Hassoun J, Scrosati B (2015) Novel configuration of poly(vinylidenedifluoride)-based gel polymer electrolyte for application in lithium-ion batteries. J Power Sources 294:180–186. https://doi.org/10.1016/j.jpowsour.2015.06.068

    Article  CAS  Google Scholar 

  38. Kouthaman M, Kannan K, Arjunan P, Meenatchi T, Subadevi R, Sivakumar M (2020) Novel Layered O3-NaFe0.45Co0.45Ti0.1O2 Cathode Material for Sodium batteries. Mater Lett 276: 128181. https://doi.org/10.1016/j.matlet.2020.128181

  39. Rajkumar P, Diwakar K, Radhika G, Krishnaveni K, Subadevi R, Sivakumar M (2019) Effect of silicon dioxide in sulfur/carbon black composite as a cathode material for lithium sulfur batteries. Vacuum 161:37–48. https://doi.org/10.1016/j.vacuum.2018.12.016

    Article  CAS  Google Scholar 

  40. Fadaei A, Salimi A, Mirzataheri M (2014) Structural elucidation of morphology and performance of the PVdF/PEG membrane. J Polym Res 21(9):545. https://doi.org/10.1007/s10965-014-0545-x

    Article  CAS  Google Scholar 

  41. Fu CC, Wu CY, Chien CC, Hsu TH, Ou SF, Chen ST, Wu CH, Hsieh CT, Juang RS, Hsueh YH (2020) Polyethylene Glycol6000/carbon nanodots as fluorescent bioimaging agents. Nanomaterials 10(4):677. https://doi.org/10.3390/nano10040677

    Article  CAS  PubMed Central  Google Scholar 

  42. Singh M, Yadav BC, Ranjan A, Kaur M, Gupta SK (2017) Synthesis and characterization of perovskite barium titanate thin film and its application as LPG sensor. Sensors Actuators B Chem 240:1170–1178. https://doi.org/10.1016/j.snb.2016.10.018

    Article  CAS  Google Scholar 

  43. Stephan AM, Nahm KS, Kumar TP, Kulandainathan MA, Ravi G, Wilson J (2006) Nanofiller incorporated poly (vinylidene fluoride–hexafluoropropylene)(PVdF–HFP) composite electrolytes for lithium batteries. J Power Sources 159(2):1316–1321. https://doi.org/10.1016/j.jpowsour.2005.11.055

    Article  CAS  Google Scholar 

  44. Shen HL, Bai L, Liao H, Xiao CF, Jia SR (2009) Effect of pore-forming agents on structure and properties of PVdF/PVC blend membranes. Adv Mater Res 79:1627–1630. https://doi.org/10.4028/www.scientific.net/AMR.79-82.1627

    Article  CAS  Google Scholar 

  45. Wang YP, Gao XH, Wang RM, Liu HG, Yang C, Xiong YB (2008) Effect of functionalized montmorillonite addition on the thermal properties and ionic conductivity of PVdF–PEG polymer electrolyte. React Funct Polym 68(7):1170–1177. https://doi.org/10.1016/j.reactfunctpolym.2008.04.002

    Article  CAS  Google Scholar 

  46. Mariappan RP, Liu C, Cao G, Manimuthu RP (2020) Tailoring SPEEK/SPVdF-co HFP/La2Zr2O7 ternary composite membrane for cation exchange membrane fuel cells. Ind Eng Chem Res 59(11):4881–4894. https://doi.org/10.1021/acs.iecr.9b06922

    Article  CAS  Google Scholar 

  47. Ma Y, Hu J, Wang Z, Zhu Y, Ma X, Cao C (2020) Poly (vinylidene fluoride)/SiO2 composite membrane separators for high-performance lithium-ion batteries to provide battery capacity with improved separator properties. J Power Sources 451:227759. https://doi.org/10.1016/j.jpowsour.2020.227759

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Department of Physics, Alagappa University for providing necessary instrumentation facilities procured through DST-FIST, DST-PURSE, and UGC-SAP programs used for characterization studies.

Funding

This work is funded by the MHRD–RUSA PHASE–2.0 (grant sanctioned vide letter no. F.24-51/2014-U), New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Sankaranarayanan or V. Ganesh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aadheeshwaran, S., Sankaranarayanan, K. & Ganesh, V. Fluoropolymer/ceramic matrix as a polymer electrolyte in Li-ion batteries: a case study on the influence of polyether into PVdF/BaTiO3 matrix via immersion precipitation. Ionics 27, 607–617 (2021). https://doi.org/10.1007/s11581-020-03828-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03828-7

Keywords

Navigation