Skip to main content
Log in

Effect of PC:DEC plasticizers on structural and electrical properties of PVDF–HFP:PMMA based gel polymer electrolyte system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A gel polymer electrolyte based on poly(vinylidene fluoride–hexafluoropropylene) (PVDF–HFP) and poly(methyl methacrylate) (PMMA) as host polymers, lithium perchlorate (\({\hbox {LiClO}}_{{4}}\)) as salt has been prepared with different concentrations of mixture of propylene carbonate (PC) and diethyl carbonate (DEC) (1:1) as plasticizers by using solution casting technique. Changes in structural properties have been studied by X-ray diffraction. Surface morphology has been analyzed using atomic force microscope studies. Electrical conductivity has been carried out by electrochemical impedance spectroscopy in the temperature range 303 K to 343 K. Addition of plasticizers to polymer blend electrolyte has been found to result in an enhancement of the ionic conductivity. A maximum electrical conductivity of \(1.03 \times 10^{-3}\) S cm\(^{-1}\) at 303 K has been achieved for the polymer blend gel electrolyte containing 60 wt\(\%\) of PC:DEC plasticizers. The temperature dependence of the ionic conductivity exhibits Vogel–Tammann–Fulcher type behavior indicating a strong coupling between the ionic conductivity and the polymer chain segmental motions. AC conductivity has been analyzed using Jonscher’s power law. A relaxation phenomenon is studied with modulus formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z. Dong, Q. Zhang, C. Yu, J. Peng, J. Ma, X. Ju, M. Zhai, Ionics 19, 1587 (2013)

    Article  CAS  Google Scholar 

  2. G. Feuillade, P. Perche, J. Appl. Electrochem. 5, 63 (1975)

    Article  CAS  Google Scholar 

  3. S. Song, J. Wang, J. Tang, R. Muchakayala, R. Ma, Ionics 23, 3365 (2017)

    Article  CAS  Google Scholar 

  4. A.M. Stephan, K. Nahm, Polymer 47, 5952 (2006)

    Article  CAS  Google Scholar 

  5. A. Arya, A.L. Sharma, Ionics 23, 497 (2017)

    Article  CAS  Google Scholar 

  6. Z. Osman, M.M. Ghazali, L. Othman, K.M. Isa, Results Phys. 2, 1 (2012)

    Article  CAS  Google Scholar 

  7. K. Vignarooban, M. Dissanayake, I. Albinsson, B.E. Mellander, Solid State Ion. 266, 25 (2014)

    Article  CAS  Google Scholar 

  8. P.C. Sekhar, P.N. Kumar, A.K. Sharma, IOSR J. Appl. Phys. 2, 01 (2012)

    Article  Google Scholar 

  9. R. Baskaran, S. Selvasekarapandian, G. Hirankumar, M. Bhuvaneswari, J. Power Sources 134, 235 (2004)

    Article  CAS  Google Scholar 

  10. C.M. Mathew, K. Kesavan, S. Rajendran, Ionics 20, 439 (2014)

    Article  CAS  Google Scholar 

  11. R. Subadevi, M. Sivakumar, S. Rajendran, H.C. Wu, N.L. Wu, Ionics 18, 283 (2012)

    Article  CAS  Google Scholar 

  12. T. Ren, X. Huang, X. Zhao, X. Tang, J. Mater. Sci. 38, 3007 (2003)

    Article  CAS  Google Scholar 

  13. K. Gohel, D.K. Kanchan, J. Adv. Dielectr. 08, 1850005 (2018)

    Article  CAS  Google Scholar 

  14. P. Pal, A. Ghosh, J. Appl. Phys. 120, 045108 (2016)

    Article  Google Scholar 

  15. C. Subbu, S. Rajendran, K. Kesavan, R. Premila, Ionics 22, 229 (2016)

    Article  CAS  Google Scholar 

  16. O. Mahendran, S. Rajendran, Ionics 9, 282 (2003)

    Article  CAS  Google Scholar 

  17. P. Sharma, D.K. Kanchan, N. Gondaliya, Ionics 19, 777 (2013)

    Article  CAS  Google Scholar 

  18. M. Ulaganathan, S. Rajendran, Ionics 16, 667 (2010)

    Article  CAS  Google Scholar 

  19. M.A. Ratner, P. Johansson, D.F. Shriver, MRS Bull. 25, 31–37 (2000)

    Article  CAS  Google Scholar 

  20. S.B. Aziz, T.J. Woo, M. Kadir, H.M. Ahmed, J. Sci. Adv. Mater. Devices 3, 1 (2018)

    Article  Google Scholar 

  21. W. Wang, P. Alexandridis, Polymers 8, 387 (2016)

    Article  Google Scholar 

  22. M.M. Borgohain, T. Joykumar, S. Bhat, Solid State Ion. 181, 964 (2010)

    Article  CAS  Google Scholar 

  23. A. Arya, A.L. Sharma, J. Phys. Condens. Matter 30, 165402 (2018)

    Article  Google Scholar 

  24. D.K. Pradhan, R. Choudhary, B. Samantaray, Mater. Chem. Phys. 115, 557 (2009)

    Article  CAS  Google Scholar 

  25. S.B. Aziz, OGh Abdullah, S.R. Saeed, H.M. Ahmed, Int. J. Electrochem. Sci. 13, 3812 (2018)

    Article  CAS  Google Scholar 

  26. R. Richert, H. Wagner, Solid State Ion. 105, 167 (1998)

    Article  CAS  Google Scholar 

  27. S.D. Druger, M.A. Ratner, A. Nitzan, Phys. Rev. B 31, 3939 (1985)

    Article  CAS  Google Scholar 

  28. V. Saminatha Kumaran, H.M. Ng, S. Ramesh, K. Ramesh, B. Vengadaesvaran, A. Numan, Ionics 24, 1947 (2018)

    Article  CAS  Google Scholar 

  29. G. Williams, D.C. Watts, Trans. Faraday Soc. 66, 80 (1970)

    Article  CAS  Google Scholar 

  30. P. Sharma, D.K. Kanchan, N. Gondaliya, M. Pant, M.S. Jayswal, Ionics 19, 301 (2013)

    Article  CAS  Google Scholar 

  31. S. Ramesh, O.P. Ling, Polym. Chem. 1, 702 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Kanchan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gohel, K., Kanchan, D.K. Effect of PC:DEC plasticizers on structural and electrical properties of PVDF–HFP:PMMA based gel polymer electrolyte system. J Mater Sci: Mater Electron 30, 12260–12268 (2019). https://doi.org/10.1007/s10854-019-01585-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01585-6

Navigation