Skip to main content
Log in

Electrochemical characterization of ionic liquid based gel polymer electrolyte for lithium battery application

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

High molecular weight polymer poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP), ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMIMFSI), and salt lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-based free-standing and conducting ionic liquid-based gel polymer electrolytes (ILGPE) have been prepared by solution cast method. Thermal, electrical, and electrochemical properties of 80 wt% IL containing gel polymer electrolyte (GPE) are investigated by thermogravimetric (TGA), impedance spectroscopy, linear sweep voltammetry (LSV), and cyclic voltammetry (CV). The 80 wt% IL containing GPE shows good thermal stability (~ 200 °C), ionic conductivity (6.42 × 10−4 S cm−1), lithium ion conductivity (1.40 × 10−4 S cm−1 at 30 °C), and wide electrochemical stability window (~ 4.10 V versus Li/Li+ at 30 °C). Furthermore, the surface of LiFePO4 cathode material was modified by graphene oxide, with smooth and uniform coating layer, as confirmed by scanning electron microscopy (SEM), and with element content, as confirmed by energy dispersive X-ray (EDX) spectrum. The graphene oxide-coated LiFePO4 cathode shows improved electrochemical performance with a good charge-discharge capacity and cyclic stability up to 50 cycles at 1C rate, as compared with the without coated LiFePO4. At 30 °C, the discharge capacity reaches a maximum value of 104.50 and 95.0 mAh g−1 for graphene oxide-coated LiFePO4 and without coated LiFePO4 at 1C rate respectively. These results indicated improved electrochemical performance of pristine LiFePO4 cathode after coating with graphene oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lin Y, Li J, Lai Y, Yuan C, Cheng Y, Liu J (2013) A wider temperature range polymer electrolyte for all-solid-state lithium ion batteries. RSC Adv 3(27):10722. https://doi.org/10.1039/c3ra40306h

    Article  CAS  Google Scholar 

  2. Feng T, Wu F, Wu C, Wang X, Feng G, Yang H (2012) A free-standing, self-assembly ternary membrane with high conductivity for lithium-ion batteries. Solid State Ionics 221:28–34. https://doi.org/10.1016/j.ssi.2012.06.013

    Article  CAS  Google Scholar 

  3. Xiang M, Tao W, Wu J, Wang Y, Liu H (2016) Synthesis and electrochemical performance of spherical LiNi0.8Co0.15Ti0.05O2 cathode materials with high tap density. Ionics (Kiel) 22(7):1003–1009. https://doi.org/10.1007/s11581-016-1639-8

    Article  CAS  Google Scholar 

  4. Singh VK, Shalu S, Chaurasia SK, Singh RK (2016) Development of ionic liquid mediated novel polymer electrolyte membranes for application in Na-ion batteries. RSC Adv 6(46):40199–40210. https://doi.org/10.1039/C6RA06047A

    Article  CAS  Google Scholar 

  5. Tripathi AK, Verma YL, Shalu et al (2017) Quasi solid-state electrolytes based on ionic liquid (IL) and ordered mesoporous matrix MCM-41 for supercapacitor application. J Solid State Electrochem 21(11):3365-3371. https://doi.org/10.1007/s10008-017-3685-1

  6. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262. https://doi.org/10.1039/c1ee01598b

    Article  CAS  Google Scholar 

  7. Yang L, Wang Y, Wu J, Xiang M, Li J, Wang B, Zhang Y, Wu H, Liu H (2017) Facile synthesis of micro-spherical LiMn0.7Fe0.3PO4/C cathodes with advanced cycle life and rate performance for lithium-ion battery. Ceram Int 43(6):4821–4830. https://doi.org/10.1016/j.ceramint.2016.12.025

    Article  CAS  Google Scholar 

  8. Shanmukaraj D, Wang GX, Murugan R, Liu HK (2008) Electrochemical studies on LiFe1-xCoxPO4/carbon composite cathode materials synthesized by citrate gel technique for lithium-ion batteries. Mater Sci Eng B Solid-State Mater Adv Technol 149(1):93–98. https://doi.org/10.1016/j.mseb.2007.12.011

    Article  CAS  Google Scholar 

  9. Thangadurai V, Adams S, Weppner W (2004) Crystal structure revision and identification of Li+-ion migration pathways in the garnet-like Li5La3M 2O12 (M = Nb, Ta) oxides. Chem Mater 16(16):2998–3006. https://doi.org/10.1021/cm031176d

    Article  CAS  Google Scholar 

  10. Appetecchi GB, Hassoun J, Scrosati B, Croce F, Cassel F, Salomon M (2003) Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes: II. All solid-state Li/LiFePO4 polymer batteries. J Power Sources 124(1):246–253. https://doi.org/10.1016/S0378-7753(03)00611-6

    Article  CAS  Google Scholar 

  11. Zaghib K, Striebel K, Guerfi A, Shim J, Armand M, Gauthier M (2004) LiFePO4/polymer/natural graphite: low cost Li-ion batteries. Electrochim Acta 50(2-3):263–270. https://doi.org/10.1016/j.electacta.2004.02.073

    Article  CAS  Google Scholar 

  12. Li M, Yang L, Fang S, Dong S, Jin Y, Hirano S, Tachibana K (2011) Li/LiFePO4 batteries with gel polymer electrolytes incorporating a guanidinium-based ionic liquid cycled at room temperature and 50 °C. J Power Sources 196(15):6502–6506. https://doi.org/10.1016/j.jpowsour.2011.03.071

    Article  CAS  Google Scholar 

  13. Wu F, Tan G, Chen R, Li L, Xiang J, Zheng Y (2011) Novel solid-state li/LiFePO4 battery configuration with a ternary nanocomposite electrolyte for practical applications. Adv Mater 23(43):5081–5085. https://doi.org/10.1002/adma.201103161

    Article  CAS  PubMed  Google Scholar 

  14. Manthiram A (2011) Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett 2(3):176–184. https://doi.org/10.1021/jz1015422

    Article  CAS  Google Scholar 

  15. Croce F, d’Epifanio A, Hassoun J, Deptula A, Olczac T, Scrosati B (2002) A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochem Solid-State Lett 5(3):A47–A50. https://doi.org/10.1149/1.1449302

    Article  CAS  Google Scholar 

  16. Malik R, Burch D, Bazant M, Ceder G (2010) Particle size dependence of the ionic diffusivity. Nano Lett 10(10):4123–4127. https://doi.org/10.1021/nl1023595

    Article  CAS  PubMed  Google Scholar 

  17. Nan C, Lu J, Li L, Li L, Peng Q, Li Y (2013) Size and shape control of LiFePO4 nanocrystals for better lithium ion battery cathode materials. Nano Res 6(7):469–477. https://doi.org/10.1007/s12274-013-0324-8

    Article  CAS  Google Scholar 

  18. Xiong X, Wang Z, Guo H, Zhang Q, Li X (2013) Enhanced electrochemical properties of lithium-reactive V2O5 coated on the LiNi0.8Co 0.1Mn 0.1O 2 cathode material for lithium ion batteries at 60 °C. J Mater Chem A 1(4):1284–1288. https://doi.org/10.1039/C2TA00678B

    Article  CAS  Google Scholar 

  19. Huang Y, Chen J, Cheng F, Wan W, Liu W, Zhou H, Zhang X (2010) A modified Al2O3 coating process to enhance the electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 and its comparison with traditional Al2O3 coating process. J Power Sources 195(24):8267–8274. https://doi.org/10.1016/j.jpowsour.2010.07.021

    Article  CAS  Google Scholar 

  20. Chang HH, Chang CC, Su CY, Wu HC, Yang MH, Wu NL (2008) Effects of TiO2 coating on high-temperature cycle performance of LiFePO4-based lithium-ion batteries. J Power Sources 185(1):466–472. https://doi.org/10.1016/j.jpowsour.2008.07.021

    Article  CAS  Google Scholar 

  21. Cho W, Kim SM, Song JH, Yim T, Woo SG, Lee KW, Kim JS, Kim YJ (2015) Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating. J Power Sources 282:45–50. https://doi.org/10.1016/j.jpowsour.2014.12.128

    Article  CAS  Google Scholar 

  22. Kong JZ, Wang SS, Tai GA, Zhu L, Wang LG, Zhai HF, Wu D, Li AD, Li H (2016) Enhanced electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material by ultrathin ZrO2 coating. J Alloys Compd 657:593–600. https://doi.org/10.1016/j.jallcom.2015.10.187

    Article  CAS  Google Scholar 

  23. Li Z, Jiang J, Zhang H, Wu Y (2007) Study of nanocomposite polymer electrolyte plasticized by room temperature ionic liquid. ACTA CHIMICA SINICA-CHINESE EDITION 65:1333

    CAS  Google Scholar 

  24. Wang J, Sun X (2012) Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ Sci 5(1):5163–5185. https://doi.org/10.1039/C1EE01263K

    Article  CAS  Google Scholar 

  25. Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem Solid-State Lett 6(10):A207. https://doi.org/10.1149/1.1601372

    Article  CAS  Google Scholar 

  26. Héctor AB, Jie M, Zunfeng L et al (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2:463–470

    Article  CAS  Google Scholar 

  27. Paek S, Yoo E, Honma I (2009) Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with. Nano Lett 9(1):72–75. https://doi.org/10.1021/nl802484w

    Article  CAS  PubMed  Google Scholar 

  28. Shi Y, Chou SL, Wang JZ, Wexler D, Li HJ, Liu HK, Wu Y (2012) Graphene wrapped LiFePO 4/C composites as cathode materials for Li-ion batteries with enhanced rate capability. J Mater Chem 22(32):16465–16470. https://doi.org/10.1039/c2jm32649c

    Article  CAS  Google Scholar 

  29. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4418. https://doi.org/10.1021/cr030203g

    Article  CAS  PubMed  Google Scholar 

  30. Opallo M, Lesniewski A (2011) A review on electrodes modified with ionic liquids. J Electroanal Chem 656(1-2):2–16. https://doi.org/10.1016/j.jelechem.2011.01.008

    Article  CAS  Google Scholar 

  31. Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42(1):21–42. https://doi.org/10.1016/j.eurpolymj.2005.09.017

    Article  CAS  Google Scholar 

  32. Das S, Ghosh A (2015) Effect of plasticizers on ionic conductivity and dielectric relaxation of PEO-LiClO4 polymer electrolyte. Electrochim Acta 171:59–65. https://doi.org/10.1016/j.electacta.2015.04.178

    Article  CAS  Google Scholar 

  33. Singh MP, Singh RK, Chandra S (2014) Ionic liquids confined in porous matrices: physicochemical properties and applications. Prog Mater Sci 64:73–120. https://doi.org/10.1016/j.pmatsci.2014.03.001

    Article  CAS  Google Scholar 

  34. Gupta H, Shalu S, Balo L, Singh VK, Chaurasia SK, Singh RK (2016) Effect of phosphonium based ionic liquid on structural, electrochemical and thermal behaviour of polymer poly(ethylene oxide) containing salt lithium bis(trifluoromethylsulfonyl)imide. RSC Adv 6(91):87878–87887. https://doi.org/10.1039/C6RA20393K

    Article  CAS  Google Scholar 

  35. Umecky T, Saito Y, Okumura Y, Maeda S, Sakai T (2008) Ionization condition of lithium ionic liquid electrolytes under the solvation effect of liquid and solid solvents. J Phys Chem B 112(11):3357–3364. https://doi.org/10.1021/jp711625r

    Article  CAS  PubMed  Google Scholar 

  36. Polu AR, Rhee HW (2017) Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries. Int J Hydrog Energy 42(10):7212–7219. https://doi.org/10.1016/j.ijhydene.2016.04.160

    Article  CAS  Google Scholar 

  37. Balo L, Shalu, Gupta H, Kumar Singh V, Kumar Singh R (2017) Flexible gel polymer electrolyte based on ionic liquid EMIMTFSI for rechargeable battery application. Electrochim Acta 230:123–131. https://doi.org/10.1016/j.electacta.2017.01.177

    Article  CAS  Google Scholar 

  38. García-Payo MC, Essalhi M, Khayet M (2009) Preparation and characterization of PVDF-HFP copolymer hollow fiber membranes for membrane distillation. Desalination 245(1-3):469–473. https://doi.org/10.1016/j.desal.2009.02.010

    Article  CAS  Google Scholar 

  39. Shalu CSK, Singh RK, Chandra S (2013) Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid, [BMIM][BF4]. J Phys Chem B 117(3):897–906. https://doi.org/10.1021/jp307694q

    Article  CAS  PubMed  Google Scholar 

  40. Costa LT, Sun B, Jeschull F, Brandell D (2015) Polymer-ionic liquids ternary systems for electrolytes: molecular dynamics studies of LiTFSI in an EMIm-TFSI and PEO blend. J Chem Phys 143(1–9):024904. https://doi.org/10.1063/1.4926470

    Article  CAS  PubMed  Google Scholar 

  41. Matsumoto K, Endo T (2011) Preparation and properties of ionic-liquid-containing poly(ethylene glycol)-based networked polymer films having lithium salt structures. J Polym Sci Part A Polym Chem 49(16):3582–3587. https://doi.org/10.1002/pola.24795

    Article  CAS  Google Scholar 

  42. Liu HS, Zhang ZR, Gong ZL, Yang Y (2004) Origin of deterioration for LiNiO2 cathode material during storage in air. Electrochem Solid-State Lett 7(7):A190. https://doi.org/10.1149/1.1738471

    Article  CAS  Google Scholar 

  43. Shalu S, Singh VK, Singh RK et al (2015) Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties. J Mater Chem C 3(28):7305–7318. https://doi.org/10.1039/C5TC00940E

    Article  CAS  Google Scholar 

  44. Liu L, Yang P, Li L, Cui Y, An M (2012) Application of bis(trifluoromethanesulfonyl)imide lithium-N-methyl-N-butylpiperidinium-bis(trifluoromethanesulfonyl)imide-poly(vinylidene difluoride-co-hexafluoropropylene) ionic liquid gel polymer electrolytes in Li/LiFePO4 batteries at different temper. Electrochim Acta 85:49–56. https://doi.org/10.1016/j.electacta.2012.08.066

    Article  CAS  Google Scholar 

  45. Pożyczka K, Marzantowicz M, Dygas JR, Krok F (2017) Ionic conductivity and lithium transference number of poly(ethylene oxide):LiTFSI system. Electrochim Acta 227:127–135. https://doi.org/10.1016/j.electacta.2016.12.172

    Article  CAS  Google Scholar 

  46. Li L, Wang J, Yang P, Guo S, Wang H, Yang X, Ma X, Yang S, Wu B (2013) Preparation and characterization of gel polymer electrolytes containing N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide ionic liquid for lithium ion batteries. Electrochim Acta 88:147–156. https://doi.org/10.1016/j.electacta.2012.10.018

    Article  CAS  Google Scholar 

  47. Ng KS, Moo CS, Chen YP, Hsieh YC (2009) Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. Appl Energy 86(9):1506–1511. https://doi.org/10.1016/j.apenergy.2008.11.021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (R. K. Singh) is thankful to DST: P-07/587, New Delhi, India, for the financial assistance. S. K. Singh is thankful to UGC, New Delhi, India, for providing the Research Fellowship. A. K. Tripathi is thankful to CSIR, New Delhi, for the award of SRF. Y.L. Verma and Shalu are thankful to National Post Doctoral fellowship sponsored by DST-SERB, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Gupta, H., Balo, L. et al. Electrochemical characterization of ionic liquid based gel polymer electrolyte for lithium battery application. Ionics 24, 1895–1906 (2018). https://doi.org/10.1007/s11581-018-2458-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2458-x

Keywords

Navigation