Skip to main content

Advertisement

Log in

Biomedical and Environmental Applications of Carrageenan-Based Hydrogels: A Review

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The need to replace renewable polymers such as marine-based resources with non-biodegradable, plastic polymers has increased due to environmental issues. Carrageenan is a phycocolloid derived from Irish Moss or carrageenan moss, a type of red algae, mainly Chondrus crispus from which the name carrageenan is derived. Due to the wide variety of algae, they can be extracted from, there are variations in the structures of carrageenan, developed from a basic linear sulfated galactose chain. It performs diverse valuable roles through its aptitude to maintain great amounts of water, being able to form a gel at room temperature, metal chelating, and activities. Carrageenan revealed potential bioactive properties, like immunomodulatory, antiviral, antibacterial, anticoagulant, antioxidant, and antitumor actions. As mentioned, this polymer has hydrogel formation capacity, and its gelling ability is applied in various fields such as pharmaceutical sciences, food technology, biotechnology, engineering, etc. This review contains exhaustive information regarding carrageenan structures, extraction methods, the gel formation mechanism, properties, and the recent development in biomedical and environmental applications of carrageenan-based hydrogels. The biomedical applications comprise wound healing, drug delivery, and tissue engineering. In the field of environmental applications, these hydrogels are employed in the elimination of varied aqueous contaminants like dyes, drugs, metals, etc. at the end of the review, several existing challenges and prospects are also described.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Nasrollahzadeh M, Shafiei N, Nezafat Z, Bidgoli NSS, Soleimani F (2020) Recent progresses in the application of cellulose, starch, alginate, gum, pectin, chitin and chitosan based (nano) catalysts in sustainable and selective oxidation reactions: a review. Carbohydr Polym 241:116353

    Article  CAS  PubMed  Google Scholar 

  2. Laurienzo P (2010) Marine polysaccharides in pharmaceutical applications: an overview. Mar drugs 8:2435–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Amin ML, Mawad D, Dokos S, Koshy P, Martens PJ, Sorrell CC (2020) Immunomodulatory properties of photopolymerizable fucoidan and carrageenans. Carbohydr Polym 230:115691

    Article  CAS  PubMed  Google Scholar 

  4. Huang Y, Zhang L, Song R, Mao X, Tang S (2020) A carrageenan/agarose composite sponge and its immunomodulatory activities toward RAW264. J Biomed Mater Res Part A 109:829

    Article  Google Scholar 

  5. Hans N, Malik A, Naik S (2020) Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19: mini review. Bioresour Technol Rep 13:100623

    Article  PubMed  PubMed Central  Google Scholar 

  6. Abdelgawad AM, El-Naggar ME, Elsherbiny DA, Ali S, Abdel-Aziz MS, Abdel-Monem YK (2020) Antibacterial carrageenan/cellulose nanocrystal system loaded with silver nanoparticles, prepared via solid-state technique. J Environ Chem Eng 8:104276

    Article  CAS  Google Scholar 

  7. Saluri K, Tuvikene R (2020) Anticoagulant and antioxidant activity of lambda-and theta-carrageenans of different molecular weights. Bioactive Carbohydr Diet Fibre 24:100243

    Article  CAS  Google Scholar 

  8. Madruga LY, Sabino RM, Santos EC, Popat KC, Balaban RdC, Kipper MJ (2020) Carboxymethyl-kappa-carrageenan: a study of biocompatibility, antioxidant and antibacterial activities. Int J Biol Macromol 152:483–491

    Article  CAS  PubMed  Google Scholar 

  9. Pacheco-Quito E-M, Ruiz-Caro R, Veiga M-D (2020) Carrageenan: drug delivery systems and other biomedical applications. Mar Drugs 18:583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khotimchenko M, Tiasto V, Kalitnik A, Begun M, Khotimchenko R, Leonteva E, Bryukhovetskiy I, Khotimchenko Y (2020) Antitumor potential of carrageenans from marine red algae. Carbohydr Polym 246:116568

    Article  CAS  PubMed  Google Scholar 

  11. Nanaki S, Karavas E, Kalantzi L, Bikiaris D (2010) Miscibility study of carrageenan blends and evaluation of their effectiveness as sustained release carriers. Carbohydr Polym 79:1157–1167

    Article  CAS  Google Scholar 

  12. Li L, Ni R, Shao Y, Mao S (2014) Carrageenan and its applications in drug delivery. Carbohydr Polym 103:1–11

    Article  CAS  PubMed  Google Scholar 

  13. Necas J, Bartosikova L (2013) Carrageenan: a review. Vet Med 58:187

    Article  CAS  Google Scholar 

  14. Younes M, Aggett P, Aguilar F, Crebelli R, Filipič M, Frutos MJ, Galtier P, Gott D, Gundert-Remy U (2018) Re‐evaluation of carrageenan (E 407) and processed Eucheuma seaweed (E 407a) as food additives. EFSA J 16:e05238

    PubMed  PubMed Central  Google Scholar 

  15. Li J, Wu C, Chu PK, Gelinsky M (2020) 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Mater Sci Eng R: Rep 140:100543

    Article  Google Scholar 

  16. Sedayu BB, Cran MJ, Bigger SW (2019) A review of property enhancement techniques for carrageenan-based films and coatings. Carbohydr Polym 216:287–302

    Article  CAS  PubMed  Google Scholar 

  17. Tasende MG, Manríquez-Hernández J (2016) Carrageenan properties and applications: a review. In: Pereira L (ed) Carrageenans: sources and extraction methods, molecular structure, bioactive properties and health effects. Nova Science Publishers, Hauppauge, pp 17–49

    Google Scholar 

  18. Shukla PS, Borza T, Critchley AT, Prithiviraj B (2016) Carrageenans from red seaweeds as promoters of growth and elicitors of defense response in plants. Front Mar Sci 3:81

    Article  Google Scholar 

  19. Kalsoom Khan A, Saba AU, Nawazish S, Akhtar F, Rashid R, Mir S, Nasir B, Iqbal F, Afzal S, Pervaiz F (2017) Carrageenan based bionanocomposites as drug delivery tool with special emphasis on the influence of ferromagnetic nanoparticles. Oxidat Med Cell Longev. https://doi.org/10.1155/2017/8158315

    Article  Google Scholar 

  20. Kianfar F, Antonijevic MD, Chowdhry BZ, Boateng JS (2011) Formulation development of a carrageenan based delivery system for buccal drug delivery using ibuprofen as a model drug. J Biomater Nanobiotechnol 2:582–595

    Article  CAS  Google Scholar 

  21. Graf C, Bernkop-Schnürch A, Egyed A, Koller C, Prieschl-Grassauer E, Morokutti-Kurz M (2018) Development of a nasal spray containing xylometazoline hydrochloride and iota-carrageenan for the symptomatic relief of nasal congestion caused by rhinitis and sinusitis. Int J Gen Med 11:275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu J, Zhan X, Wan J, Wang Y, Wang C (2015) Review for carrageenan-based pharmaceutical biomaterials: favourable physical features versus adverse biological effects. Carbohydr Polym 121:27–36

    Article  CAS  PubMed  Google Scholar 

  23. Rode MP, Batti Angulski AB, Gomes FA, da Silva MM, Jeremias TdS, de Carvalho RG, Vieira I, Oliveira DG, Fernandes LFC, Maia L, Trentin AG (2018) Carrageenan hydrogel as a scaffold for skin-derived multipotent stromal cells delivery. J Biomater Appl 33:422–434

    Article  CAS  PubMed  Google Scholar 

  24. Roy S, Rhim J-W (2019) Preparation of carrageenan-based functional nanocomposite films incorporated with melanin nanoparticles. Colloids Surf B: Biointerfaces 176:317–324

    Article  CAS  PubMed  Google Scholar 

  25. Manzoor A, Dar AH, Pandey VK, Shams R, Khan S, Panesar PS, Kennedy JF, Fayaz U, Khan SA (2022) Recent insights into polysaccharide-based hydrogels and their potential applications in food sector: a review. Int J Biol Macromol 213:987–1006

    Article  CAS  PubMed  Google Scholar 

  26. Qureshi MAR, Arshad N, Rasool A, Islam A, Rizwan M, Haseeb M, Rasheed T, Bilal M (2022) Chitosan and carrageenan-based biocompatible hydrogel platforms for cosmeceutical, drug delivery, and biomedical applications. Starch-Stärke. https://doi.org/10.1002/star.202200052

    Article  Google Scholar 

  27. Yegappan R, Selvaprithiviraj V, Amirthalingam S, Jayakumar R (2018) Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydr Polym 198:385–400

    Article  CAS  PubMed  Google Scholar 

  28. Joy R, Vigneshkumar P, John F, George J (2021) Hydrogels based on carrageenan. In: Giri TK, Ghosh B (eds) Plant and algal hydrogels for drug delivery and regenerative medicine. Elsevier, Amsterdam, pp 293–325

    Chapter  Google Scholar 

  29. Hemmati B, Javanshir S, Dolatkhah Z (2016) Hybrid magnetic irish moss/Fe 3 O 4 as a nano-biocatalyst for synthesis of imidazopyrimidine derivatives. RSC Adv 6:50431–50436

    Article  CAS  Google Scholar 

  30. Zaheri HM, Javanshir S, Hemmati B, Dolatkhah Z, Fardpour M (2018) Magnetic core–shell Carrageenan moss/Fe3O4: a polysaccharide-based metallic nanoparticles for synthesis of pyrimidinone derivatives via Biginelli reaction. Chem Cent J 12:1–11

    Google Scholar 

  31. Dolatkhah Z, Javanshir S, Bazgir A, Hemmati B (2019) Palladium on magnetic irish moss: a new nano-biocatalyst for suzuki type cross‐coupling reactions. Appl Organomet Chem 33:e4859

    Article  Google Scholar 

  32. Amirnejat S, Nosrati A, Peymanfar R, Javanshir S (2020) Synthesis and antibacterial study of 2-amino-4 H-pyrans and pyrans annulated heterocycles catalyzed by sulfated polysaccharide-coated BaFe12O19 nanoparticles. Res Chem Intermediates 46:3683–3701

    Article  CAS  Google Scholar 

  33. Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408

    Article  PubMed  Google Scholar 

  34. Muir VG, Burdick JA (2020) Chemically modified biopolymers for the formation of biomedical hydrogels. Chem Rev 121:10908–10949

    Article  PubMed  PubMed Central  Google Scholar 

  35. Husain MSB, Gupta A, Alashwal BY, Sharma S (2018) Synthesis of PVA/PVP based hydrogel for biomedical applications: a review. Energy Sourc Part A: Recov Utiliz Environ Effects 40:2388–2393

    Article  CAS  Google Scholar 

  36. Radvar E, Azevedo HS (2019) Supramolecular peptide/polymer hybrid hydrogels for biomedical applications. Macromol Biosci 19:1800221

    Article  Google Scholar 

  37. Shi L, Ding P, Wang Y, Zhang Y, Ossipov D, Hilborn J (2019) Self-healing polymeric hydrogel formed by metal–ligand coordination assembly: design, fabrication, and biomedical applications. Macromol Rapid Commun 40:1800837

    Article  Google Scholar 

  38. Thakur S, Sharma B, Verma A, Chaudhary J, Tamulevicius S, Thakur VK (2018) Recent progress in sodium alginate based sustainable hydrogels for environmental applications. J Clean Prod 198:143–159

    Article  CAS  Google Scholar 

  39. Wang Y, Zhu Y, Hu Y, Zeng G, Zhang Y, Zhang C, Feng C (2018) How to construct DNA hydrogels for environmental applications: advanced water treatment and environmental analysis. Small 14:1703305

    Article  Google Scholar 

  40. Yu F, Sun Y, Yang M, Ma J (2019) Adsorption mechanism and effect of moisture contents on ciprofloxacin removal by three-dimensional porous graphene hydrogel. J Hazard Mater 374:195–202

    Article  CAS  PubMed  Google Scholar 

  41. Mushtaq F, Raza ZA, Batool SR, Zahid M, Onder OC, Rafique A, Nazeer MA (2022) Preparation, properties, and applications of gelatin-based hydrogels (GHs) in the environmental, technological, and biomedical sectors. Int J Biol Macromol 218:601

    Article  CAS  PubMed  Google Scholar 

  42. Madduma-Bandarage US, Madihally SV (2021) Synthetic hydrogels: synthesis, novel trends, and applications. J Appl Polym Sci 138:50376

    Article  CAS  Google Scholar 

  43. Hao S, Shao C, Meng L, Cui C, Xu F, Yang J (2020) Tannic acid–silver dual catalysis induced rapid polymerization of conductive hydrogel sensors with excellent stretchability, self-adhesion, and strain-sensitivity properties. ACS Appl Mater Interfaces 12:56509–56521

    Article  CAS  PubMed  Google Scholar 

  44. Jiao L, Xu W, Yan H, Wu Y, Gu W, Li H, Du D, Lin Y, Zhu C (2019) A dopamine-induced au hydrogel nanozyme for enhanced biomimetic catalysis. Chem Commun 55:9865–9868

    Article  CAS  Google Scholar 

  45. El Fakir AA, Anfar Z, Amedlous A, Zbair M, Hafidi Z, El Achouri M, Jada A, El Alem N (2021) Engineering of new hydrogel beads based conducting polymers: metal-free catalysis for highly organic pollutants degradation. Appl Catal B: Environ 286:119948

    Article  Google Scholar 

  46. Baretta R, Gabrielli V, Frasconi M (2022) Nanozyme-cellulose hydrogel composites enabling cascade catalysis for the colorimetric detection of glucose. ACS Appl Nano Mater 5:13845

    Article  CAS  Google Scholar 

  47. Godiya CB, Sayed SM, Xiao Y, Lu X (2020) Highly porous egg white/polyethyleneimine hydrogel for rapid removal of heavy metal ions and catalysis in wastewater. Reactive Funct Polym 149:104509

    Article  CAS  Google Scholar 

  48. Batista RA, Espitia PJP, Quintans JdSS, Freitas MM, Cerqueira M, Teixeira JA, Cardoso JC (2019) Hydrogel as an alternative structure for food packaging systems. Carbohydr Polym 205:106–116

    Article  CAS  PubMed  Google Scholar 

  49. Yang J, Shen M, Luo Y, Wu T, Chen X, Wang Y, Xie J (2021) Advanced applications of chitosan-based hydrogels: from biosensors to intelligent food packaging system. Trends Food Sci Technol 110:822–832

    Article  CAS  Google Scholar 

  50. Dai L, Xi X, Li X, Li W, Du Y, Lv Y, Wang W, Ni Y (2021) Self-assembled all-polysaccharide hydrogel film for versatile paper-based food packaging. Carbohydr Polym 271:118425

    Article  CAS  PubMed  Google Scholar 

  51. Regubalan B, Pandit P, Maiti S, Nadathur GT, Mallick A (2018) Potential bio-based edible films, foams, and hydrogels for food packaging. In: Ahmed S (ed) Bio-based materials for food packaging. Springer, Singapore, pp 105–123

    Chapter  Google Scholar 

  52. Ishwarya S, Nisha P (2022) Advances and prospects in the food applications of pectin hydrogels. Crit Rev Food Sci Nutr 62:4393–4417

    Article  Google Scholar 

  53. Vázquez-Delfín E, Robledo D, Freile-Pelegrín Y (2014) Microwave-assisted extraction of the Carrageenan from Hypnea musciformis (Cystocloniaceae, Rhodophyta). J Appl Phycol 26:901–907

    Article  Google Scholar 

  54. Rodriguez S, Torres FG, Arroyo J, Gonzales KN, Troncoso OP, López D (2020) Synthesis of highly stable κ/ι-hybrid carrageenan micro-and nanogels via a sonication-assisted microemulsion route. Polym Renew Resour 11:69–82

    Google Scholar 

  55. Ajithkumar S, Krishnaraj G, Abdul Haleem M, Manivasagan V, Babu R, Dr N, Durai P (2017) Optimization of carrageenan extraction process from seaweed. World J Pharm Pharm Sci 6:2205–2213

    Google Scholar 

  56. Abdillah AA, Alamsjah MA, Charles AL (2020) An optimised low-salinity seawater decolourising method produces decolourised seaweed (Kappaphycuz alvarezii) as semi-refined carrageenan raw material. Int J Food Sci Technol 56:2336

    Article  Google Scholar 

  57. Naseri A, Jacobsen C, Sejberg JJ, Pedersen TE, Larsen J, Hansen KM, Holdt SL (2020) Multi-extraction and quality of protein and Carrageenan from commercial spinosum (Eucheuma denticulatum). Foods 9:1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Husin A (2014) Extraction of Kappa Carrageenan from local seaweed. UMP

  59. Pereira L (2016) Carrageenans: sources and extraction methods, molecular structure, bioactive properties and health effects. Nova Science Publishers, Hauppauge

    Google Scholar 

  60. Diharmi A, Fardiaz D, Andarwulan N, Heruwati ES (2017) Chemical and physical characteristics of carrageenan extracted from Eucheuma spinosum harvested from three different I ndonesian coastal sea regions. Phycol Res 65:256–261

    Article  CAS  Google Scholar 

  61. Lomartire S, Marques JC, Gonçalves AM (2022) An overview of the alternative use of seaweeds to produce safe and sustainable bio-packaging. Appl Sci 12:3123

    Article  CAS  Google Scholar 

  62. Khalil H, Lai T, Tye Y, Rizal S, Chong E, Yap S, Hamzah A, Fazita M, Paridah M (2018) A review of extractions of seaweed hydrocolloids: properties and applications. Express Polym Lett 12:296

    Article  Google Scholar 

  63. McHugh DJ (2003) A guide to the seaweed industry FAO Fisheries Technical Paper 441, vol. 110. Food and Agriculture Organization of the United Nations, Rome

  64. Damiri F, Bachra Y, Berrada M (2022) Synthesis and characterization of 4-formylphenylboronic acid cross-linked chitosan hydrogel with dual action: glucose-sensitivity and controlled insulin release. Chin J Anal Chem 50:100092

    Article  Google Scholar 

  65. Damiri F, Bachra Y, Bounacir C, Laaraibi A, Berrada M (2020) Synthesis and characterization of lyophilized chitosan-based hydrogels cross-linked with benzaldehyde for controlled drug release. J Chem. https://doi.org/10.1155/2020/8747639

    Article  Google Scholar 

  66. Liao J, Huang H (2020) Review on magnetic natural polymer constructed Hydrogels as vehicles for drug delivery. Biomacromolecules 21:2574–2594

    Article  CAS  PubMed  Google Scholar 

  67. Mondal S, Das S, Nandi AK (2020) A review on recent advances in polymer and peptide hydrogels. Soft Matter 16:1404–1454

    Article  CAS  PubMed  Google Scholar 

  68. Dinh L, Hong J, Kim DM, Lee G, Park EJ, Baik SH, Hwang S-J (2022) A novel thermosensitive poloxamer-hyaluronic acid-kappa-carrageenan-based hydrogel anti-adhesive agent loaded with 5-fluorouracil: a preclinical study in Sprague-Dawley rats. Int J Pharm 621:121771

    Article  CAS  PubMed  Google Scholar 

  69. Wang X, Yang Y, Wang R, Li L, Zhao X, Zhang W (2022) Porous Ni3S2–Co9S8 carbon aerogels derived from Carrageenan/NiCo-MOF hydrogels as an efficient electrocatalyst for oxygen evolution in rechargeable Zn–Air batteries. Langmuir 38:7280

    Article  CAS  PubMed  Google Scholar 

  70. Zhang Y, Man J, Li J, Xing Z, Zhao B, Ji M, Xia H, Li J (2022) Preparation of the alginate/carrageenan/shellac films reinforced with cellulose nanocrystals obtained from enteromorpha for food packaging. Int J Biol Macromol 218:519–532

    Article  CAS  PubMed  Google Scholar 

  71. Razali MH, Ismail NA, Yusoff M (2022) Bio-nanocomposite of Carrageenan incorporating titanium dioxide nanoparticles scaffold and hydrogel for tissue engineering applications. Nanoeng Biomater. https://doi.org/10.1002/9783527832095.ch27

    Article  Google Scholar 

  72. Zhou A, Hu Y, Chen C, Mao H, Wang L, Zhang S, Huang X (2022) 3D bioprintable methacrylated carrageenan/sodium alginate dual network hydrogel for vascular tissue engineering scaffolding. Int J Polym Mater Polym Biomater. https://doi.org/10.1080/00914037.2022.2032704

    Article  Google Scholar 

  73. Chandika P, Kim M-S, Khan F, Kim Y-M, Heo S-Y, Oh G-W, Kim NG, Jung W-K (2021) Wound healing properties of triple cross-linked poly (vinyl alcohol)/methacrylate kappa-carrageenan/chitooligosaccharide hydrogel. Carbohydr Polym 269:118272

    Article  CAS  PubMed  Google Scholar 

  74. Ijaz U, Sohail M, Usman Minhas M, Khan S, Hussain Z, Kazi M, Shah A, Mahmood S, Maniruzzaman M (2022) Biofunctional hyaluronic acid/κ-Carrageenan injectable hydrogels for improved drug delivery and wound healing. Polymers 14:376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li R, Wu G (2020) Preparation of polysaccharide-based hydrogels via radiation technique. In: Chen Y (ed) Hydrogels based on natural polymers. Elsevier, Amsterdam, pp 119–148

    Chapter  Google Scholar 

  76. Tavakoli S, Kharaziha M, Nemati S, Kalateh A (2020) Nanocomposite hydrogel based on carrageenan-coated starch/cellulose nanofibers as a hemorrhage control material. Carbohydr Polym 251:117013

    Article  PubMed  Google Scholar 

  77. Schefer L, Adamcik J, Diener M, Mezzenga R (2015) Supramolecular chiral self-assembly and supercoiling behavior of carrageenans at varying salt conditions. Nanoscale 7:16182–16188

    Article  CAS  PubMed  Google Scholar 

  78. Montero P, Perez-Mateos M (2002) Effects of Na+, K + and Ca2+ on gels formed from fish mince containing a carrageenan or alginate. Food Hydrocoll 16:375–385

    Article  CAS  Google Scholar 

  79. Cunha L, Grenha A (2016) Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar drugs 14:42

    Article  PubMed  PubMed Central  Google Scholar 

  80. Elfaruk MS, Wen C, Chi C, Li X, Janaswamy S (2021) Effect of salt addition on iota-carrageenan solution properties. Food Hydrocoll 113:106491

    Article  CAS  Google Scholar 

  81. Bahari A, Moelants K, Wallecan J, Mangiante G, Mazoyer J, Hendrickx M, Grauwet T (2021) Understanding the effect of time, temperature and salts on carrageenan extraction from Chondrus crispus. Algal Res 58:102371

    Article  Google Scholar 

  82. Renn D (1997) Biotechnology and the red seaweed polysaccharide industry: status, needs and prospects. Trends Biotechnol 15:9–14

    Article  CAS  Google Scholar 

  83. Li W, Qamar SA, Qamar M, Basharat A, Bilal M, Iqbal HM (2021) Carrageenan-based nano-hybrid materials for the mitigation of hazardous environmental pollutants. Int J Biol Macromol 190:700–712

    Article  CAS  PubMed  Google Scholar 

  84. Lim W, Kim GJ, Kim HW, Lee J, Zhang X, Kang MG, Seo JW, Cha JM, Park HJ, Lee M-Y (2020) Kappa-carrageenan-based dual crosslinkable bioink for extrusion type bioprinting. Polymers 12:2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mokhtari H, Tavakoli S, Safarpour F, Kharaziha M, Bakhsheshi-Rad HR, Ramakrishna S, Berto F (2021) Recent advances in chemically-modified and hybrid carrageenan-based platforms for drug delivery, wound healing, and tissue engineering. Polymers 13:1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nair AV, Raman M, Doble M (2016) Cyclic β-(1→ 3)(1→ 6) glucan/carrageenan hydrogels for wound healing applications. RSC Adv 6:98545–98553

    Article  CAS  Google Scholar 

  87. Polat TG, Duman O, Tunç S (2020) Agar/κ-carrageenan/montmorillonite nanocomposite hydrogels for wound dressing applications. Int J Biol Macromol 164:4591–4602

    Article  CAS  PubMed  Google Scholar 

  88. Muthuswamy S, Viswanathan A, Yegappan R, Selvaprithiviraj V, Vasudevan AK, Biswas R, Jayakumar R (2018) Antistaphylococcal and neutrophil chemotactic injectable κ-carrageenan hydrogel for infectious wound healing. ACS Appl Bio Mater 2:378–387

    Article  PubMed  Google Scholar 

  89. Pettinelli N, Rodriguez-Llamazares S, Bouza R, Barral L, Feijoo-Bandin S, Lago F (2020) Carrageenan-based physically crosslinked injectable hydrogel for wound healing and tissue repairing applications. Int J Pharm 589:119828

    Article  CAS  PubMed  Google Scholar 

  90. Ngwabebhoh FA, Patwa R, Zandraa O, Saha N, Saha P (2021) Preparation and characterization of injectable self-antibacterial gelatin/carrageenan/bacterial cellulose hydrogel scaffolds for wound healing application. J Drug Deliv Sci Technol 63:102415

    Article  CAS  Google Scholar 

  91. Özkahraman B, Özbaş Z, Yaşayan G, Akgüner ZP, Yarımcan F, Alarçin E, Bal-Öztürk A (2022) Development of mucoadhesive modified kappa‐carrageenan/pectin patches for controlled delivery of drug in the buccal cavity. J Biomed Mater Res Part B: Appl Biomater 110:787–798

    Article  Google Scholar 

  92. Bilici C, Can V, Nöchel U, Behl M, Lendlein A, Okay O (2016) Melt-processable shape-memory hydrogels with self-healing ability of high mechanical strength. Macromolecules 49:7442–7449

    Article  CAS  Google Scholar 

  93. Nguyen CT, Vu MQ, Phan TT, Vu TQ, Vo QA, Bach GL, Thai H (2020) Novel pH-sensitive hydrogel beads based on Carrageenan and fish scale collagen for allopurinol drug delivery. J Polym Environ 28:1795

    Article  CAS  Google Scholar 

  94. Vaid V, Jindal R (2022) RSM-CCD optimized in air synthesis of novel kappa-carrageenan/tamarind kernel powder hybrid polymer network incorporated with inclusion complex of (2-hydroxypropyl)-β-cyclodextrin and adenosine for controlled drug delivery. J Drug Deliv Sci Technol 67:102976

    Article  CAS  Google Scholar 

  95. Farooq A, Farooq A, Jabeen S, Islam A, Gull N, Khan RU, Haq ul, Mehmood HS, Hussain A, Bilal M (2022) Designing Kappa-carrageenan/guar gum/polyvinyl alcohol-based pH-responsive silane-crosslinked hydrogels for controlled release of cephradine. J Drug Deliv Sci Technol 67:102969

    Article  CAS  Google Scholar 

  96. Rasool A, Ata S, Islam A, Khan RU (2019) Fabrication of novel carrageenan based stimuli responsive injectable hydrogels for controlled release of cephradine. RSC Adv 9:12282–12290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pettinelli N, Rodríguez-Llamazares S, Farrag Y, Bouza R, Barral L, Feijoo-Bandín S, Lago F (2020) Poly (hydroxybutyrate-co-hydroxyvalerate) microparticles embedded in κ-carrageenan/locust bean gum hydrogel as a dual drug delivery carrier. Int J Biol Macromol 146:110–118

    Article  CAS  PubMed  Google Scholar 

  98. Mahdavinia GR, Mosallanezhad A, Soleymani M, Sabzi M (2017) Magnetic-and pH-responsive κ-carrageenan/chitosan complexes for controlled release of methotrexate anticancer drug. Int J Biol Macromol 97:209–217

    Article  CAS  PubMed  Google Scholar 

  99. Jaiswal L, Shankar S, Rhim J-W (2019) Carrageenan-based functional hydrogel film reinforced with sulfur nanoparticles and grapefruit seed extract for wound healing application. Carbohydr Polym 224:115191

    Article  CAS  PubMed  Google Scholar 

  100. Olsson M, Järbrink K, Divakar U, Bajpai R, Upton Z, Schmidtchen A, Car J (2019) The humanistic and economic burden of chronic wounds: a systematic review. Wound Repair Regen 27:114–125

    Article  PubMed  Google Scholar 

  101. Jafari H, Atlasi Z, Mahdavinia GR, Hadifar S, Sabzi M (2021) Magnetic κ-carrageenan/chitosan/montmorillonite nanocomposite hydrogels with controlled sunitinib release. Mater Sci Eng C 124:112042

    Article  CAS  Google Scholar 

  102. Mahdavinia GR, Karimi MH, Soltaniniya M, Massoumi B (2019) In vitro evaluation of sustained ciprofloxacin release from κ-carrageenan-crosslinked chitosan/hydroxyapatite hydrogel nanocomposites. Int J Biol Macromol 126:443–453

    Article  CAS  PubMed  Google Scholar 

  103. Dinoro J, Maher M, Talebian S, Jafarkhani M, Mehrali M, Orive G, Foroughi J, Lord MS, Dolatshahi-Pirouz A (2019) Sulfated polysaccharide-based scaffolds for orthopaedic tissue engineering. Biomaterials 214:119214

    Article  CAS  PubMed  Google Scholar 

  104. Ogueri KS, Jafari T, Ivirico JLE, Laurencin CT (2019) Polymeric biomaterials for scaffold-based bone regenerative engineering. Regen Eng Transl Med 5:128–154

    Article  CAS  PubMed  Google Scholar 

  105. Sathain A, Monvisade P, Siriphannon P (2021) Bioactive alginate/carrageenan/calcium silicate porous scaffolds for bone tissue engineering. Mater Today Commun 26:102165

    Article  CAS  Google Scholar 

  106. Du C, Hu J, Wu X, Shi H, Yu HC, Qian J, Yin J, Gao C, Wu ZL, Zheng Q (2022) 3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite. J Mater Chem B 10:468

    Article  CAS  PubMed  Google Scholar 

  107. İlhan GT, Irmak G, Gümüşderelioğlu M (2020) Microwave assisted methacrylation of Kappa carrageenan: a bioink for cartilage tissue engineering. Int J Biol Macromol 164:3523–3534

    Article  PubMed  Google Scholar 

  108. Khan MUA, Haider S, Haider A, Abd Razak SI, Kadir MRA, Shah SA, Javed A, Shakir I, Al-Zahrani AA (2021) Development of porous, antibacterial and biocompatible GO/n-HAp/bacterial cellulose/β-glucan biocomposite scaffold for bone tissue engineering. Arab J Chem 14:102924

    Article  Google Scholar 

  109. Khan MUA, Raza MA, Mehboob H, Kadir MRA, Razak A, Shah SI, Iqbal SA, Amin R (2020) Development and in vitro evaluation of κ-carrageenan based polymeric hybrid nanocomposite scaffolds for bone tissue engineering. RSC Adv 10:40529–40542

    Article  Google Scholar 

  110. Li Z, Du T, Ruan C, Niu X (2021) Bioinspired mineralized collagen scaffolds for bone tissue engineering. Bioactive Mater 6:1491–1511

    Article  CAS  Google Scholar 

  111. Pourjavadi A, Doroudian M, Ahadpour A, Azari S (2019) Injectable chitosan/κ-carrageenan hydrogel designed with au nanoparticles: a conductive scaffold for tissue engineering demands. Int J Biol Macromol 126:310–317

    Article  CAS  PubMed  Google Scholar 

  112. Rocha PM, Santo VE, Gomes ME, Reis RL, Mano JF (2011) Encapsulation of adipose-derived stem cells and transforming growth factor-β1 in carrageenan-based hydrogels for cartilage tissue engineering. J Bioactive Compat Polym 26:493–507

    Article  CAS  Google Scholar 

  113. Sharifianjazi F, Esmaeilkhanian A, Moradi M, Pakseresht A, Asl MS, Karimi-Maleh H, Jang HW, Shokouhimehr M, Varma RS (2021) Biocompatibility and mechanical properties of pigeon bone waste extracted natural nano-hydroxyapatite for bone tissue engineering. Mater Sci Eng B 264:114950

    Article  CAS  Google Scholar 

  114. Tavakoli S, Kharaziha M, Kermanpur A, Mokhtari H (2019) Sprayable and injectable visible-light Kappa-carrageenan hydrogel for in-situ soft tissue engineering. Int J Biol Macromol 138:590–601

    Article  CAS  PubMed  Google Scholar 

  115. Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W (2018) 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Mater 3:278–314

    Article  Google Scholar 

  116. Yang C-Y, Huang W-Y, Chen L-H, Liang N-W, Wang H-C, Lu J, Wang X, Wang T-W (2021) Neural tissue engineering: the influence of scaffold surface topography and extracellular matrix microenvironment. J Mater Chem B 9:567–584

    Article  CAS  PubMed  Google Scholar 

  117. Zia I, Jolly R, Mirza S, Rehman A, Shakir M (2022) Nanocomposite materials developed from Nano-hydroxyapatite Impregnated Chitosan/κ‐Carrageenan for bone tissue engineering. ChemistrySelect 7:e202103234

    Article  CAS  Google Scholar 

  118. Azadi S, Esmkhani M, Javanshir S (2022) New collagen-based cryogel as bio-sorbent materials for Rhodamine B removal from aqueous environments. J Sol-Gel Sci Technol 103:405

    Article  CAS  Google Scholar 

  119. Duman O, Polat TG, Diker C, Tunç S (2020) Agar/κ-carrageenan composite hydrogel adsorbent for the removal of Methylene Blue from water. Int J Biol Macromol 160:823

    Article  CAS  PubMed  Google Scholar 

  120. Huang L, Jin S, Bao F, Tang S, Yang J, Peng K, Chen Y (2022) Construction of a physically cross-linked carrageenan/chitosan/calcium ion double-network hydrogel for 3-nitro-1,2,4-triazole-5-one removal. J Hazard Mater 424:127510

    Article  CAS  PubMed  Google Scholar 

  121. Lapwanit S, Sooksimuang T, Trakulsujaritchok T (2018) Adsorptive removal of cationic methylene blue dye by kappa-carrageenan/poly (glycidyl methacrylate) hydrogel beads: preparation and characterization. J Environ Chem Eng 6:6221–6230

    Article  CAS  Google Scholar 

  122. Levy-Ontman O, Yanay C, Paz-Tal O, Wolfson A (2022) Iota-carrageenan as sustainable bio-adsorbent for the removal of europium ions from aqueous solutions. Mater Today Commun 32:104111

    Article  CAS  Google Scholar 

  123. Mittal H, Al Alili A, Alhassan SM (2020) High efficiency removal of methylene blue dye using κ-carrageenan-poly(acrylamide-co-methacrylic acid)/AQSOA-Z05 zeolite hydrogel composites. Cellulose 27:8269–8285

    Article  CAS  Google Scholar 

  124. Rather RA, Bhat MA, Shalla AH (2022) Multicomponent interpenetrating metal based Alginate-Carrageenan biopolymer hydrogel beads substantiated by graphene oxide for efficient removal of methylene blue from waste water. Chem Eng Res Des 182:604–615

    Article  CAS  Google Scholar 

  125. Jain A, Gupta Y, Jain SK (2007) Perspectives of biodegradable natural polysaccharides for site-specific drug delivery to the colon. J Pharm Pharm Sci 10:86–128

    CAS  PubMed  Google Scholar 

  126. Buenger D, Topuz F, Groll J (2012) Hydrogels in sensing applications. Prog Polym Sci 37:1678–1719

    Article  CAS  Google Scholar 

  127. Malmsten M (2011) Antimicrobial and antiviral hydrogels. Soft Matter 7:8725–8736

    Article  CAS  Google Scholar 

  128. Azizi S, Mohamad R, Rahim RA, Mohammadinejad R, Ariff AB (2017) Hydrogel beads bio-nanocomposite based on Kappa-Carrageenan and green synthesized silver nanoparticles for biomedical applications. Int J Biol Macromol 104:423–431

    Article  CAS  PubMed  Google Scholar 

  129. Ijaola AO, Akamo DO, Damiri F, Akisin CJ, Bamidele EA, Ajiboye EG, Berrada M, Onyenokwe VO, Yang S-Y, Asmatulu E (2022) Polymeric biomaterials for wound healing applications: a comprehensive review. J Biomater Sci Polym Ed 33:1998–2050

    Article  CAS  PubMed  Google Scholar 

  130. Pardeshi S, Damiri F, Zehravi M, Joshi R, Kapare H, Prajapati MK, Munot N, Berrada M, Giram PS, Rojekar S (2022) Functional thermoresponsive hydrogel molecule to material design for biomedical applications. Polymers 14:3126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang L, Sun L, Bian F, Wang Y, Zhao Y (2022) Self-bonded hydrogel inverse opal particles as sprayed flexible patch for wound healing. ACS Nano 16:2640

    Article  CAS  PubMed  Google Scholar 

  132. Vinklárková L, Masteikova R, Foltýnová G, Muselik J, Pavloková S, Bernatonienė J, Vetchý D (2017) Film wound dressing with local anesthetic based on insoluble carboxymethycellulose matrix. J Appl Biomed 15:313–320

    Article  Google Scholar 

  133. Kanikireddy V, Varaprasad K, Jayaramudu T, Karthikeyan C, Sadiku R (2020) Carboxymethyl cellulose-based materials for infection control and wound healing: a review. Int J Biol Macromol 164:963

    Article  CAS  PubMed  Google Scholar 

  134. Derakhshandeh H, Kashaf SS, Aghabaglou F, Ghanavati IO, Tamayol A (2018) Smart bandages: the future of wound care. Trends Biotechnol 36:1259–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mir M, Ali MN, Barakullah A, Gulzar A, Arshad M, Fatima S, Asad M (2018) Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater 7:1–21

    Article  PubMed  PubMed Central  Google Scholar 

  136. Singh P, Verma C, Mukhopadhyay S, Gupta A, Gupta B (2022) Preparation of thyme oil loaded κ-carrageenan-polyethylene glycol hydrogel membranes as wound care system. Int J Pharm 618:121661

    Article  CAS  PubMed  Google Scholar 

  137. Zepon KM, Marques MS, da Silva Paula MM, Morisso FDP, Kanis LA (2018) Facile, green and scalable method to produce carrageenan-based hydrogel containing in situ synthesized AgNPs for application as wound dressing. Int J Biol Macromol 113:51–58

    Article  CAS  PubMed  Google Scholar 

  138. Yu HC, Zhang H, Ren K, Ying Z, Zhu F, Qian J, Ji J, Wu ZL, Zheng Q (2018) Ultrathin κ-carrageenan/chitosan hydrogel films with high toughness and antiadhesion property. ACS Appl Mater Interfaces 10:9002–9009

    Article  CAS  PubMed  Google Scholar 

  139. Qin Z, Gautieri A, Nair AK, Inbar H, Buehler MJ (2012) Thickness of hydroxyapatite nanocrystal controls mechanical properties of the collagen–hydroxyapatite interface. Langmuir 28:1982–1992

    Article  CAS  PubMed  Google Scholar 

  140. Shuai C, Yuan X, Yang W, Peng S, Qian G, Zhao Z (2021) Synthesis of a mace-like cellulose nanocrystal@ Ag nanosystem via in-situ growth for antibacterial activities of poly-L-lactide scaffold. Carbohydr Polym 262:117937

    Article  CAS  PubMed  Google Scholar 

  141. Calabrese G, Petralia S, Franco D, Nocito G, Fabbi C, Forte L, Guglielmino S, Squarzoni S, Traina F, Conoci S (2021) A new Ag-nanostructured hydroxyapatite porous scaffold: antibacterial effect and cytotoxicity study. Mater Sci Eng C 118:111394

    Article  CAS  Google Scholar 

  142. Haghighi FD, Beidokhti SM, Najaran ZT, Saghi SS (2021) Highly improved biological and mechanical features of bioglass-ceramic/gelatin composite scaffolds using a novel silica coverage. Ceram Int 47:14048–14061

    Article  CAS  Google Scholar 

  143. Demeyer S, Athipornchai A, Pabunrueang P, Trakulsujaritchok T (2021) Development of mangiferin loaded chitosan-silica hybrid scaffolds: physicochemical and bioactivity characterization. Carbohydr Polym 261:117905

    Article  CAS  PubMed  Google Scholar 

  144. Zhang H, Jao C, He Z, Ge M, Tian Z, Wang C, Wei Z, Shen L, Liang H (2021) Fabrication and properties of 3D printed zirconia scaffold coated with calcium silicate/hydroxyapatite. Ceram Int 47:27032

    Article  CAS  Google Scholar 

  145. Feng W, Feng S, Tang K, He X, Jing A, Liang G (2017) A novel composite of collagen-hydroxyapatite/kappa-carrageenan. J Alloys Compd 693:482–489

    Article  CAS  Google Scholar 

  146. Mirza S, Jolly R, Zia I, Saad Umar M, Owais M, Shakir M (2020) Bioactive Gum Arabic/κ-Carrageenan-incorporated nano-hydroxyapatite nanocomposites and their relative biological functionalities in bone tissue engineering. ACS Omega 5:11279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Deng Y, Huang M, Sun D, Hou Y, Li Y, Dong T, Wang X, Zhang L, Yang W (2018) Dual physically cross-linked κ-carrageenan-based double network hydrogels with superior self-healing performance for biomedical application. ACS Appl Mater Interfaces 10:37544–37554

    Article  CAS  PubMed  Google Scholar 

  148. Yu F, Cui T, Yang C, Dai X, Ma J (2019) κ-Carrageenan/Sodium alginate double-network hydrogel with enhanced mechanical properties, anti-swelling, and adsorption capacity. Chemosphere 237:124417

    Article  PubMed  Google Scholar 

  149. Kulal P, Badalamoole V (2020) Hybrid nanocomposite of kappa-carrageenan and magnetite as adsorbent material for water purification. Int J Biol Macromol 165:542–553

    Article  CAS  PubMed  Google Scholar 

  150. Khoshkho SM, Tanhaei B, Ayati A, Kazemi M (2021) Preparation and characterization of ionic and non-ionic surfactants impregnated κ-carrageenan hydrogel beads for investigation of the adsorptive mechanism of cationic dye to develop for biomedical applications. J Mol Liquids 324:115118

    Article  CAS  Google Scholar 

  151. Mahdavinia GR, Massoudi A, Baghban A, Shokri E (2014) Study of adsorption of cationic dye on magnetic kappa-carrageenan/PVA nanocomposite hydrogels. J Environ Chem Eng 2:1578–1587

    Article  CAS  Google Scholar 

  152. Mahdavinia GR, Rahmani Z, Mosallanezhad A, Karami S, Shahriari M (2016) Effect of magnetic laponite RD on swelling and dye adsorption behaviors of κ-carrageenan-based nanocomposite hydrogels. Desalin Water Treat 57:20582–20596

    Article  CAS  Google Scholar 

  153. Karadağ E, Hasgül B, Kundakci S, Üzüm ÖB (2014) A study of polymer/clay hybrid composite sorbent-based AAm/SMA hydrogels and semi-IPNs composed of ɩ-carrageenan and montmorillonite for water and dye sorption. Adv Polym Technol. https://doi.org/10.1002/adv.21432

    Article  Google Scholar 

  154. Hosseinzadeh H (2015) Synthesis of carrageenan/multi-walled carbon nanotube hybrid hydrogel nanocomposite for adsorption of crystal violet from aqueous solution. Pol J Chem Technol 17:70–76

    Article  CAS  Google Scholar 

  155. Hosseinzadeh H, Zoroufi S, Mahdavinia GR (2015) Study on adsorption of cationic dye on novel kappa-carrageenan/poly (vinyl alcohol)/montmorillonite nanocomposite hydrogels. Polym Bull 72:1339–1363

    Article  CAS  Google Scholar 

  156. Mahdavinia GR, Massoudi A, Baghban A, Massoumi B (2012) Novel carrageenan-based hydrogel nanocomposites containing laponite RD and their application to remove cationic dye. Iran Polym J 21:609–619

    Article  CAS  Google Scholar 

  157. Srivastava A, Azad SK, Singh K, Prasad B, Kumari M, Sahoo AK, Dave H, Maurya DM, Singh D, Prasad KS (2022) Arsenite and arsenate ions adsorption onto a biogenic nano-iron entrapped dual network Fe@ alginate-κ-carrageenan hydrogel beads. Nanotechnol Environ Eng. https://doi.org/10.1007/s41204-022-00280-y

    Article  Google Scholar 

  158. Klongklaew P, Bunkoed O (2021) The enrichment and extraction of parabens with polydopamine-coated microporous carrageenan hydrogel beads incorporating a hierarchical composite of metal-organic frameworks and magnetite nanoparticles. Microchem J 165:106103

    Article  CAS  Google Scholar 

  159. Fang Y, Hu J, Wang H, Chen D, Zhang A, Wang X, Ni Y (2022) Development of stable agar/carrageenan-Fe3O4-Klebsiella pneumoniae composite beads for efficient phenol degradation. Environ Res 205:112454

    Article  CAS  PubMed  Google Scholar 

  160. Pourjavadi A, Doulabi M, Doroudian M (2014) Adsorption characteristics of malachite green dye onto novel kappa-carrageenan-g-polyacrylic acid/TiO2–NH2 hydrogel nanocomposite. J Iran Chem Soc 11:1057–1065

    Article  CAS  Google Scholar 

  161. Dargahi M, Ghasemzadeh H, Bakhtiary A (2018) Highly efficient absorption of cationic dyes by nano composite hydrogels based on κ-carrageenan and nano silver chloride. Carbohydr Polym 181:587–595

    Article  CAS  PubMed  Google Scholar 

  162. Song G, Shi Y, Li A, Wang H, Ding G (2021) Facile preparation of three-dimensional graphene oxide/ι-carrageenan composite aerogel and its efficient ability for selective adsorption of methylene blue. J Mater Sci 56:14866

    Article  CAS  Google Scholar 

  163. Sharma S, Sharma G, Kumar A, AlGarni TS, Naushad M, ALOthman ZA, Stadler FJ (2022) Adsorption of cationic dyes onto carrageenan and itaconic acid-based superabsorbent hydrogel: synthesis, characterization and isotherm analysis. J Hazard Mater 421:126729

    Article  CAS  PubMed  Google Scholar 

  164. Sharma AK, Dhiman A, Nayak AK, Mishra R, Agrawal G (2022) Environmentally benign approach for the efficient sequestration of methylene blue and coomassie brilliant blue using graphene oxide emended gelatin/κ-carrageenan hydrogels. Int J Biol Macromol 219:353–365

    Article  CAS  PubMed  Google Scholar 

  165. Gaw S, Thomas KV, Hutchinson TH (2014) Sources, impacts and trends of pharmaceuticals in the marine and coastal environment. Philos Trans R Soc B: Biol Sci 369:20130572

    Article  Google Scholar 

  166. Minguez L, Pedelucq J, Farcy E, Ballandonne C, Budzinski H, Halm-Lemeille M-P (2016) Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environ Sci Pollut Res 23:4992–5001

    Article  CAS  Google Scholar 

  167. Li L, Zhao J, Sun Y, Yu F, Ma J (2019) Ionically cross-linked sodium alginate/ĸ-carrageenan double-network gel beads with low-swelling, enhanced mechanical properties, and excellent adsorption performance. Chem Eng J 372:1091–1103

    Article  CAS  Google Scholar 

  168. Soares SF, Nogueira J, Trindade T, Daniel-da-Silva AL (2022) Towards efficient ciprofloxacin adsorption using magnetic hybrid nanoparticles prepared with κ-, ι-, and λ-carrageenan. J Nanostruct Chem. https://doi.org/10.1007/s40097-022-00498-x

    Article  Google Scholar 

  169. Li Y, Li J, Shi Z, Wang Y, Song X, Wang L, Han M, Du H, He C, Zhao W (2020) Anticoagulant chitosan-kappa-carrageenan composite hydrogel sorbent for simultaneous endotoxin and bacteria cleansing in septic blood. Carbohydr Polym 243:116470

    Article  CAS  PubMed  Google Scholar 

  170. Shen J, Xu X, Ouyang X-K, Jin M-C (2021) Adsorption of Pb (II) from aqueous solutions using nanocrystalline cellulose/sodium alginate/K-Carrageenan composite hydrogel beads. J Polym Environ 30:1995

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

AM, ME, and MZ wrote the original draft. ZN prepared the figures and edited the manuscript. SJ, Conceptualization, supervision and editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Shahrzad Javanshir.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, A., Esmkhani, M., Zallaghi, M. et al. Biomedical and Environmental Applications of Carrageenan-Based Hydrogels: A Review. J Polym Environ 31, 1679–1705 (2023). https://doi.org/10.1007/s10924-022-02726-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02726-5

Keywords

Navigation