Skip to main content
Log in

Adsorption of Pb(II) from Aqueous Solutions Using Nanocrystalline Cellulose/Sodium Alginate/K-Carrageenan Composite Hydrogel Beads

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Based on the excellent performances of nanocrystalline cellulose, sodium alginate, or K-carrageenan in Pb2+ adsorption, nanocrystalline cellulose/sodium alginate/K-carrageenan composite hydrogel beads were prepared to adsorb Pb(II) from aqueous solutions. The objective of this study was to demonstrate the excellent potential of the composite hydrogel beads for heavy metal ion adsorption. We successfully prepared ecofriendly Fe-modified nanocrystalline cellulose/sodium alginate/K-carrageenan composite hydrogel beads and characterized them. The structure and adsorption mechanism were investigated using scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy, and the optimal adsorption conditions were determined. The tricomponent hydrogel beads were robust and exhibited improved adsorption capacity for Pb2+ and good reusability. The adsorption results could be fitted well with a pseudo-second-order kinetic model and the Langmuir adsorption model. The maximum adsorption capacity obtained by fitting was 351.04 mg g−1. Recycling experiments revealed that the adsorption capacity of the adsorbent remained high after five cycles of reuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CNC:

Nanocrystalline cellulose

FTIR:

Fourier-transform infrared

SEM:

Scanning electron microscopy

EDX:

Energy-dispersive X-ray spectroscopy

XPS:

X-ray photoelectron spectroscopy

PFO:

Pseudo first order

PSO:

Pseudo second order

References

  1. Fry KL, Wheeler CA, Gillings MM, Russell Flegal A, Taylor MP (2020) Anthropogenic contamination of residential environments from smelter As, Cu and Pb emissions: implications for human health. Environ Pollut 262:114235

    CAS  PubMed  Google Scholar 

  2. Dragan ES, Cocarta AI, Dinu MV (2014) Facile fabrication of chitosan/poly(vinyl amine) composite beads with enhanced sorption of Cu2+. Equilibrium, kinetics, and thermodynamics. Chem Eng J 255:659–669

    CAS  Google Scholar 

  3. Liang XX, Ouyang X-K, Wang S, Yang L-Y, Huang F, Ji C, Chen X (2019) Efficient adsorption of Pb(II) from aqueous solutions using aminopropyltriethoxysilane-modified magnetic attapulgite@chitosan (APTS-Fe3O4/APT@CS) composite hydrogel beads. Int J Biol Macromol 137:741–750

    CAS  PubMed  Google Scholar 

  4. Chen Y, Long Y, Li Q, Chen X, Xi Xu (2019) Synthesis of high-performance sodium carboxymethyl cellulose-based adsorbent for effective removal of methylene blue and Pb (II). Int J Biol Macromol 126:107–117

    CAS  PubMed  Google Scholar 

  5. Dhaouadi F, Sellaoui L, Badawi M, Reynel-Ávila HE, Mendoza-Castillo DI, Jaime-Leal JE, Bonilla-Petriciolet A, Lamine AB (2020) Statistical physics interpretation of the adsorption mechanism of Pb2+, Cd2+ and Ni2+ on chicken feathers. J Mol Liquids 319:114168

    CAS  Google Scholar 

  6. Liu Y, Gao Q, Li C, Liu S, Xia K, Han B, Zhou C (2019) Effective coating of crosslinked polyethyleneimine on elastic spongy monolith for highly efficient batch and continuous flow adsorption of Pb(II) and acidic red 18. Chem Eng J. https://doi.org/10.1016/j.cej.2019.123610

    Article  Google Scholar 

  7. Keshav V, Achilonu I, Dirr HW, Kondiah K (2019) Recombinant expression and purification of a functional bacterial metallo-chaperone PbrD-fusion construct as a potential biosorbent for Pb(II). Protein Expr Purif 158:27–35

    Google Scholar 

  8. Sahu S, Pahi S, Tripathy S, Singh SK, Behera A, Sahu UK, Patel RK (2020) Adsorption of methylene blue on chemically modified lychee seed biochar: dynamic, equilibrium, and thermodynamic study. J Mol Liquids 315:113743

    CAS  Google Scholar 

  9. Bozbas SK, Ay U, Kayan A (2013) Novel inorganic-organic hybrid polymers to remove heavy metals from aqueous solution. Desalin Water Treat 51:7208–7215

    CAS  Google Scholar 

  10. Kayan A (2019) Inorganic-organic hybrid materials and their adsorbent properties. Adv Compos Hybrid Mater 2:34–45

    CAS  Google Scholar 

  11. Kayan GO, Kayan A (2021) Composite of natural polymers and their adsorbent properties on the dyes and heavy metal ions. J Polym Environ. https://doi.org/10.1007/s10924-021-02154-x

    Article  Google Scholar 

  12. Li C, Wang XJ, Meng DY, Zhou L (2018) Facile synthesis of low-cost magnetic biosorbent from peach gum polysaccharide for selective and efficient removal of cationic dyes. Int J Biol Macromol 107:1871–1878

    CAS  PubMed  Google Scholar 

  13. Ebrahimzadeh H, Asgharinezhad AA, Moazzen E, Amini MM, Sadeghi O (2015) A magnetic ion-imprinted polymer for lead(II) determination: a study on the adsorption of lead(II) by beverages. J Food Compos Anal 41:74–80

    CAS  Google Scholar 

  14. Chamchoy K, Inprasit T, Vanichvattanadecha C, Thiangtrong A, Anukunwithaya P, Pisitsak P (2021) The magnetic properties and dye adsorption of sericin-modified magnetite nanoparticles. J Polym Environ 29:484–491

    CAS  Google Scholar 

  15. Song Y, Yang L-Y, Wang Y-G, Di Yu, Shen J, Ouyang X-K (2019) Highly efficient adsorption of Pb(II) from aqueous solution using amino-functionalized SBA-15/calcium alginate microspheres as adsorbent. Int J Biol Macromol 125:808–819

    CAS  PubMed  Google Scholar 

  16. Agnihotri S, Singhal R (2019) Effect of sodium alginate content in acrylic acid/sodium humate/sodium alginate superabsorbent hydrogel on removal capacity of MB and CV dye by adsorption. J Polym Environ 27:372–385

    CAS  Google Scholar 

  17. Li R, Liu Y, Lan G, Qiu H, Xu B, Xu Q, Sun N, Zhang L (2021) Pb(II) adsorption characteristics of magnetic GO-hydroxyapatite and the contribution of GO to enhance its acid resistance. Journal of Environmental Chemical Engineering 9:105310

    CAS  Google Scholar 

  18. Liu C, Omer AM, Ouyang X-k (2018) Adsorptive removal of cationic methylene blue dye using carboxymethyl cellulose/k-carrageenan/activated montmorillonite composite beads: isotherm and kinetic studies. Int J Biol Macromol 106:823–833

    CAS  PubMed  Google Scholar 

  19. Wang F, Duo TT, Wang YX, Xiao ZH, Xu AR, Liu RK (2021) Novel polyethyleneimine/kappa-carrageenan composite from facile one-step fabrication for the removal of copper ion from aqueous solution. J Polym Environ. https://doi.org/10.1007/s10924-021-02247-7

    Article  PubMed  PubMed Central  Google Scholar 

  20. Qu J, Tian X, Jiang Z, Cao B, Akindolie MS, Hu Q, Feng C, Feng Y, Meng X, Zhang Y (2020) Multi-component adsorption of Pb(II), Cd(II) and Ni(II) onto microwave-functionalized cellulose: kinetics, isotherms, thermodynamics, mechanisms and application for electroplating wastewater purification. J Hazard Mater 387:121718

    CAS  PubMed  Google Scholar 

  21. Araga R, Sharma CS (2019) Amine functionalized electrospun cellulose nanofibers for fluoride adsorption from drinking water. J Polym Environ 27:816–826

    CAS  Google Scholar 

  22. Montes L, Gisbert M, Hinojosa I, Sineiro J, Moreira R (2021) Impact of drying on the sodium alginate obtained after polyphenols ultrasound-assisted extraction from Ascophyllum nodosum seaweeds. Carbohydrate Polymers 272:118455

    CAS  PubMed  Google Scholar 

  23. Fan L, Yuqing Lu, Yang L-Y, Huang F, Ouyang X-K (2019) Fabrication of polyethylenimine-functionalized sodium alginate/cellulose nanocrystal/polyvinyl alcohol core–shell microspheres ((PVA/SA/CNC)@PEI) for diclofenac sodium adsorption. J Colloid Interface Sci 554:48–58

    CAS  PubMed  Google Scholar 

  24. Li L, Zhao J, Sun Y, Fei Yu, Ma J (2019) Ionically cross-linked sodium alginate/ĸ-carrageenan double-network gel beads with low-swelling, enhanced mechanical properties, and excellent adsorption performance. Chem Eng J 372:1091–1103

    CAS  Google Scholar 

  25. Yu F, Cui T, Yang C, Dai X, Ma J (2019) κ-Carrageenan/Sodium alginate double-network hydrogel with enhanced mechanical properties, anti-swelling, and adsorption capacity. Chemosphere 237:124417

    PubMed  Google Scholar 

  26. Najafpoor A, Norouzian-Ostad R, Alidadi H, Rohani-Bastami T, Davoudi M, Barjasteh-Askari F, Zanganeh J (2020) Effect of magnetic nanoparticles and silver-loaded magnetic nanoparticles on advanced wastewater treatment and disinfection. J Mol Liquids 303:112640

    CAS  Google Scholar 

  27. Alsuhybani M, Alshahrani A, Algamdi M, Al-Kahtani AA, Alqadami AA (2020) Highly efficient removal of Pb(II) from aqueous systems using a new nanocomposite: adsorption, isotherm, kinetic and mechanism studies. J Mol Liquids 301:112393

    CAS  Google Scholar 

  28. Huang B, Lu MC, Wang DL, Song YH, Zhou L (2018) Versatile magnetic gel from peach gum polysaccharide for efficient adsorption of Pb2+ and Cd2+ ions and catalysis. Carbohyd Polym 181:785–792

    CAS  Google Scholar 

  29. Tan KB, Reza AK, Abdullah AZ, Horri BA, Salamatinia B (2018) Development of self-assembled nanocrystalline cellulose as a promising practical adsorbent for methylene blue removal. Carbohydr Polym 199:92–101

    CAS  PubMed  Google Scholar 

  30. Qinghua Xu, Wang Y, Liqiang Jin Yu, Wang MQ (2017) Adsorption of Cu (II), Pb (II) and Cr (VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose. J Hazard Mater 339:91–99

    Google Scholar 

  31. Hashem A, Fletcher AJ, Younis H, Mauof H, Abou-Okeil A (2020) Adsorption of Pb(II) ions from contaminated water by 1,2,3,4-butanetetracarboxylic acid-modified microcrystalline cellulose: isotherms, kinetics, and thermodynamic studies. Int J Biol Macromol 164:3193–3203

    CAS  PubMed  Google Scholar 

  32. Wang N, Ouyang X-K, Yang L-Y, Omer AM (2017) Fabrication of a magnetic cellulose nanocrystal/metal–organic framework composite for removal of Pb(II) from water. ACS Sustain Chem Eng 5:10447–10458

    CAS  Google Scholar 

  33. Jiang F, Zhang D, Ouyang X-k, Yang L-Y (2021) Fabrication of porous polyethyleneimine-functionalized chitosan/Span 80 microspheres for adsorption of diclofenac sodium from aqueous solutions. Sustain Chem Pharm 21:100418

    Google Scholar 

  34. Abdi G, Alizadeh A, Amirian J, Rezaei S, Sharma G (2019) Polyamine-modified magnetic graphene oxide surface: feasible adsorbent for removal of dyes. J Mol Liquids 289:111118

    CAS  Google Scholar 

  35. Alqadami AA, Naushad M, Abdalla MA, Ahamad T, Alothman ZA, Alshehri SM, Ghfar AA (2017) Efficient removal of toxic metal ions from wastewater using a recyclable nanocomposite: a study of adsorption parameters and interaction mechanism. J Clean Prod 156:426–436

    Google Scholar 

  36. Zhang Y, Xia M, Wang F, Ma J (2021) Experimental and theoretical study on the adsorption mechanism of Amino trimethylphosphate (ATMP) functionalized hydroxyapatite on Pb (II) and Cd (II). Colloids Surf A Physicochem Eng Asp 626:12729

    Google Scholar 

  37. Ahmad R, Mirza A (2015) Sequestration of heavy metal ions by Methionine modified bentonite/Alginate (Meth-bent/Alg): a bionanocomposite. Groundw Sustain Dev 1:50–58

    Google Scholar 

  38. Kulal P, Badalamoole V (2020) Hybrid nanocomposite of kappa-carrageenan and magnetite as adsorbent material for water purification. Int J Biol Macromol 165:542–553

    CAS  PubMed  Google Scholar 

  39. Zhang J, Li T, Li X, Liu Y, Li N, Wang Y, Li X (2021) A key role of inner-cation-pi interaction in adsorption of Pb(II) on carbon nanotubes: experimental and DFT studies. J Hazard Mater 412:125187

    CAS  PubMed  Google Scholar 

  40. Wang C, Xiong C, He Y, Yang C, Li X, Zheng J, Wang S (2021) Facile preparation of magnetic Zr-MOF for adsorption of Pb(II) and Cr(VI) from water: adsorption characteristics and mechanisms. Chem Eng J 415:128923

    CAS  Google Scholar 

  41. Hu ZH, Omer AM, Ouyang XK, Yu D (2018) Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(II) from aqueous solution. Int J Biol Macromol 108:149–157

    CAS  PubMed  Google Scholar 

  42. Jafarnejad M, Asli MD, Taromi FA, Manoochehri M (2020) Synthesis of multi-functionalized Fe3O4–NH2-SH nanofiber based on chitosan for single and simultaneous adsorption of Pb(II) and Ni(II) from aqueous system. Int J Biol Macromol 148:201–217

    CAS  PubMed  Google Scholar 

  43. Lian Q, Ahmad ZU, Gang DD, Zappi ME, Fortela DLB, Hernandez R (2020) The effects of carbon disulfide driven functionalization on graphene oxide for enhanced Pb(II) adsorption: Investigation of adsorption mechanism. Chemosphere 248:126078

    CAS  PubMed  Google Scholar 

  44. Jiang Q, Xie W, Han S, Wang Y, Zhang Y (2019) Enhanced adsorption of Pb(II) onto modified hydrochar by polyethyleneimine or H3PO4: an analysis of surface property and interface mechanism. Colloids Surf A Physicochem Eng Asp 583:123962

    CAS  Google Scholar 

  45. Ahmed W, Mehmood S, Nunez-Delgado A, Ali S, Qaswar M, Shakoor A, Mahmood M, Chen DY (2021) Enhanced adsorption of aqueous Pb(II) by modified biochar produced through pyrolysis of watermelon seeds. Sci Total Environ 784:147136

    CAS  PubMed  Google Scholar 

  46. Chen Y, Wang S, Li Y, Liu Y, Chen Y, Wu Y, Zhang J, Li H, Peng Z, Xu R, Zeng Z (2020) Adsorption of Pb(II) by tourmaline-montmorillonite composite in aqueous phase. J Colloid Interface Sci 575:367–376

    CAS  PubMed  Google Scholar 

  47. van Veenhuyzen B, Tichapondwa S, Hörstmann C, Chirwa E, Brink HG (2021) High capacity Pb(II) adsorption characteristics onto raw- and chemically activated waste activated sludge. J Hazard Mater 416:125943

    PubMed  Google Scholar 

  48. Hashem A, Aniagor CO, Taha GM, Fikry M (2021) Utilization of low-cost sugarcane waste for the adsorption of aqueous Pb(II): kinetics and isotherm studies. Curr Res Green Sustain Chem 4:100056

    Google Scholar 

  49. Miao Y, Peng W, Cao Y, Chang L, Fan G, Yu F (2021) Facile preparation of sulfhydryl modified montmorillonite nanosheets hydrogel and its enhancement for Pb(II) adsorption. Chemosphere 280:130727

    CAS  PubMed  Google Scholar 

  50. Wang Z, Xu J, Yellezuome D, Liu R (2021) Effects of cotton straw-derived biochar under different pyrolysis conditions on Pb (II) adsorption properties in aqueous solutions. J Anal Appl Pyrolysis 157:105214

    CAS  Google Scholar 

  51. Han X, Li P, Zhang M, Wang J, Cao Y, Zhang T, Zhou G, Li F (2021) Designing three-dimensional half-embedded ES-PAN/AHCNs adsorption membrane for removal of Pb(II), Cu(II) and Cr(III). Colloids Surf A Physicochem Eng Asp 627:127177

    CAS  Google Scholar 

  52. Shi S, Dong Q, Wang Y, Zhang X, Zhu S, Chow YT, Wang X, Zhu L, Zhang G, Xu D (2021) Self-supporting super hydrophilic MgFe2O4 flexible fibers for Pb(II) adsorption. Sep Purif Technol 266:118584

    CAS  Google Scholar 

  53. Xu X, Ouyang X-k, Yang L-Y (2021) Adsorption of Pb(II) from aqueous solutions using crosslinked carboxylated chitosan/carboxylated nanocellulose hydrogel beads. J Mol Liquids 322:114523

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21606136) and Zhejiang Provincial Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals (Grant Nos. 2021001, 2021002).

Author information

Authors and Affiliations

Authors

Contributions

JS: Investigation, Funding acquisition. FJ: Investigation, Data curation, writing-Original Draft. X-kO: Conceptualization, Methodology, Funding acquisition. M-cJ: Supervision, Funding acquisition.

Corresponding authors

Correspondence to Jian Shen, Xiao-kun Ouyang or Mi-cong Jin.

Ethics declarations

Conflict of interest

There are no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Xu, X., Ouyang, Xk. et al. Adsorption of Pb(II) from Aqueous Solutions Using Nanocrystalline Cellulose/Sodium Alginate/K-Carrageenan Composite Hydrogel Beads. J Polym Environ 30, 1995–2006 (2022). https://doi.org/10.1007/s10924-021-02334-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02334-9

Keywords

Navigation