Skip to main content
Log in

Study on adsorption of cationic dye on novel kappa-carrageenan/poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, novel kappa-carrageenan/poly(vinyl alcohol) nanocomposite hydrogels were developed by incorporating sodium montmorillonite nanoclay. The mixture of polymers and montmorillonite was crosslinked with freezing–thawing technique and subsequent with K+ ions. The structure of nanocomposite hydrogels was characterized with the FTIR, SEM, XRD, and TEM techniques. By introducing montmorillonite nanoclay, the swelling capacity of nanocomposites was decreased from 1200 to 320 % due to the crosslinking role of montmorillonite nanoclay. The adsorption of cationic crystal violet dye on nanocomposite hydrogels was studied via batch adsorption system on the subject of contact time, nanoclay content, pH of dye solution, temperature, and ion strength of dye solution. Compared with clay-free hydrogel, the nanocomposites indicated a relatively improved adsorption capacity at the same batch system. The variation in the pH of initial dye solution had no significant effect on dye adsorption capacity of hydrogels. Study on salinity of dye solutions showed that while the NaCl salt had less effect on adsorption capacity of hydrogels, in the presence of CaCl2 and AlCl3 salts, the adsorption capacity of nanocomposites was significantly decreased. The adsorption kinetics of crystal violet on hydrogels was well described by the pseudo-second-order model. Also, the equilibrium dye adsorption data were analyzed with non-linear Langmuir and Freundlich models and the equilibrium process was followed well the Langmuir model. According to the Langmuir model, the maximum adsorption capacity of nanocomposites was obtained 151 mg g−1. Thermodynamic parameters confirmed the spontaneity of the adsorption process. Therefore, the synthesized hydrogel nanocomposites could be employed as a low-cost adsorbent in the removal of dyes from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. White JL, Bumm SH (2011) Polymer blend compounding and processing. In: Isayev AI, Palsule S (eds) Encyclopedia of polymer blends. Wiley-VCH, Weinheim, pp 1–26

    Google Scholar 

  2. Xie Y, Wang A (2009) Study on superabsorbent composites XIX. Synthesis, characterization and performance of chitosan-g-poly (acrylic acid)/vermiculite superabsorbent composites. J Polym Res 16:143–150

    Article  CAS  Google Scholar 

  3. Bagheri Marandi G, Mahdavinia GR, Ghafary S (2011) Collagen-g-poly (sodium acrylate-co-acrylamide)/sodium montmorillonite superabsorbent nanocomposites: synthesis and swelling behavior. J Polym Res 18:1487–1499

    Article  CAS  Google Scholar 

  4. Hassine K, Durmus A, Kasgoz A (2008) Enhanced swelling and adsorption properties of AAm-AMPSNa/clay hydrogel nanocomposites for heavy metal ion removal. Polym Adv Technol 19:213–220

    Article  Google Scholar 

  5. Sperling LH (2012) Interpenetrating polymer networks and related materials. Springer, New York

    Google Scholar 

  6. Demirel G, Ozcetin G, Sahin F, Tumturk H, Aksoy S, Hasirci N (2006) Semi-interpenetrating polymer networks (IPNs) for entrapment of glucose isomerase. React Funct Polym 66:389–394

    Article  CAS  Google Scholar 

  7. Kirk RE, Othmer DF (1992). Encyclopedia of chemical technology. In: Kroschwitz JI, Howe-Grant M (eds) vol 4, 4th edn. Wiley, New York, p 942

  8. Takemasa M, Chiba A, Date M (2002) Counter ion dynamics of κ- and ι-carrageenan aqueous solutions investigated by the dielectric properties. Macromolecules 35(14):5595–5600

    Article  CAS  Google Scholar 

  9. Antonov YA, Goncalves MP (1999) Phase separation in aqueous gelatin-carrageenan systems. Food Hydrocoll 13:517–524

    Article  CAS  Google Scholar 

  10. Araujo JV, Davidenko N, Danner M, Cameron RE, Best SM (2014) Novel porous scaffolds of pH responsive chitosan/carrageenan-based polyelectrolyte complexes for tissue engineering. J Biomed Mater Res A 102:4415–4426

    CAS  Google Scholar 

  11. Park JS, Park JW, Ruckenstein E (2001) Thermal and dynamic mechanical analysis of PVA/MC blend hydrogels. Polymer 42:4271–4280

    Article  CAS  Google Scholar 

  12. Peppas NA, Stauffer SR (1991) Reinforced uncrosslinked poly (vinyl alcohol) gels produced by cyclic freezing-thawing processes: a short review. J Control Release 16:305–310

    Article  CAS  Google Scholar 

  13. Yokoyama F, Masada I, Shimamura K, Ikawa T, Monobe K (1986) Morphology and structure of highly elastic poly (vinyl alcohol) hydrogel prepared by repeated freezing-and melting. Colloid Polym Sci 26:595–601

    Article  Google Scholar 

  14. Kim JO, Park JK, Kim JH, Jin SG, Yonga CS, Li DX, Choi JY, Woo JS, Yoo BK, Lyoo WS, Kim JA, Choi HG (2008) Development of poly(vinyl alcohol-sodium alginate gel-matrix-based wound dressing system containing nitrofurazone. Int J Pharm 359:79–86

    Article  CAS  Google Scholar 

  15. Buchholz FL, Graham AT (1997) Modern superabsorbent polymer technology. Wiley, New York

    Google Scholar 

  16. Singh B, Pal L (2008) Development of sterculia gum based wound dressings for use in drug delivery. Eur Polym J 44:3222–3230

    Article  CAS  Google Scholar 

  17. Sorbara L, Jones L, Williams LD (2009) Contact lens induced papillary conjunctivitis with silicone hydrogel lenses. Contact Lens Anter Eye 32:93–96

    Article  CAS  Google Scholar 

  18. Mao L, Hu Y, Piao Y, Chen X, Xian W, Piao D (2005) Structure and character of artificial muscle model constructed from fibrous hydrogel. Curr Appl Phys 5:426–428

    Article  Google Scholar 

  19. Lee CT, Kung PH, Lee YD (2005) Preparation of poly (vinyl alcohol)-chondroitin sulfate hydrogel as matrices in tissue engineering. Carbohydr Polym 61:348–354

    Article  CAS  Google Scholar 

  20. Wu J, Wei W, Lian YW, Su ZG, Ma GH (2007) A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. Biomaterials 28:2220–2232

    Article  CAS  Google Scholar 

  21. Lin Y, Chen Q, Luo H (2007) Preparation and characterization of N-(2-carboxybenzyl) chitosan as a potential pH-sensitive hydrogel for drug delivery. Carbohydr Res 342:87–95

    Article  CAS  Google Scholar 

  22. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70

    Article  CAS  Google Scholar 

  23. Kim SS, Lee YM, Cho CS (1995) Semi-interpenetrating polymer networks composed of β-chitin and poly(ethylene glycol) macromer. J Polym Sci A Polym Chem. 33:2285–2287

    Article  CAS  Google Scholar 

  24. Farshi Azhar F, Olad A, Mirmohseni A (2014) Development of novel hybrid nanocomposites based on natural biodegradable polymer–montmorillonite/polyaniline: preparation and characterization. Polym Bull 71:1591–1610

    Article  CAS  Google Scholar 

  25. Yuanqing X, Zhiqin P (2006) A new polymer/clay nano-composite hydrogel with improved response rate and tensile mechanical properties. Eur Polym J 42:2125–2132

    Article  Google Scholar 

  26. Mahdavinia GR, Asgari A (2013) Synthesis of kappa-carrageenan-g-poly(acrylamide)/sepiolite nanocomposite hydrogels and adsorption of cationic dye. Polym Bull 70:2451–2470

    Article  CAS  Google Scholar 

  27. Zhang Q, Li X, Zhao Y, Chen L (2009) Preparation and performance of nanocomposite hydrogels based on different clay. Appl Clay Sci 46:346–350

    Article  CAS  Google Scholar 

  28. Yi J, Ma Y, Zhang L (2008) Synthesis and decoloring properties of sodium humate/poly (N-isopropylacrylamide) hydrogels. Bioresour Technol 99:5362–5367

    Article  CAS  Google Scholar 

  29. Kaplan M, Kasgoz H (2011) Hydrogels nanocomposite sorbents for removal of basic dyes. Polym Bull 67:1153–1168

    Article  CAS  Google Scholar 

  30. Xiang YQ, Peng ZQ, Chen DJ (2006) A new polymer/clay nano-composite hydrogel with improved response rate and tensile mechanical properties. Eur Polym J 42:2125–2132

    Article  CAS  Google Scholar 

  31. Wu JH, Wei YL, Lin JM, Lin SB (2003) Study on starch-graft-acrylamide/mineral powder superabsorbent composite. Polymer 44:6513–6520

    Article  CAS  Google Scholar 

  32. Sanghi R, Bhattacharya B (2002) Review on decolorization of aqueous dye solutions by low cost adsorbents. Color Technol 118:256–269

    Article  CAS  Google Scholar 

  33. Dotto GL, Pinto LAA (2011) Adsorption of food dyes onto chitosan: optimization process and kinetic. Carbohydr Polym 84:231–238

    Article  CAS  Google Scholar 

  34. Zhu HY, Jiang R, Xiao L, Li W (2010) A novel magnetically separable c-Fe2O3/crosslinked chitosan adsorbent: preparation, characterization and adsorption application for removal of hazardous azo dye. J Hazard Mater 179:251–257

    Article  CAS  Google Scholar 

  35. Luo X, Zhang L (2009) High effective adsorption of organic dyes on magnetic cellulose beads entrapping activate carbon. J Hazard Mater 171:340–347

    Article  CAS  Google Scholar 

  36. Sui K, Li Y, Liu R, Zhang Y, Zhao X, Liang H, Xia Y (2012) Biocomposite fiber of calcium alginate/multi-walled carbon nanotubes with enhanced adsorption properties for ionic dyes. Carbohydr Polym 90:399–406

    Article  CAS  Google Scholar 

  37. Wan Ngah WS, Teong LC, Hanafiah MAKM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83:1446–1456

    Article  CAS  Google Scholar 

  38. Sirousazar M, Kokabi M, Hassan ZM (2012) Swelling behavior and structural characteristics of poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels. J Appl Polym Sci 123:50–58

    Article  CAS  Google Scholar 

  39. Sirousazar M, Kokabi M, Hassan ZM, Bahramian AR (2012) Poly(vinyl alcohol)/Na-montmorillonite nanocomposite hydrogels prepared by freezing-thawing method: structural, mechanical, thermal, and swelling properties. J Macromol Sci B Phys 51:71335–71350

    Google Scholar 

  40. Ip KH, Stuart BH, Ray TA (2011) Characterization of poly(vinyl alcohol)–montmorillonite composites with higher clay contents. Polym Test 30:732–736

    Article  CAS  Google Scholar 

  41. Mahdavinia GR, Masoudi A, Baghban A (2014) Study on adsorption of cationic dye on magnetic kappa-carrageenan/PVA nanocomposite hydrogels. J Environ Chem Eng 2:1578–1587

    Article  CAS  Google Scholar 

  42. Muhamad II, Fen LS, Hui NH, Mustapha NA (2011) Genipincross-linked kappa-carrageenan/carboxymethyl cellulose beads and effects on beta-carotene release. Carbohydr Polym 83:1207–1212

    Article  CAS  Google Scholar 

  43. Mahdavinia GR, Iravani S, Zoroufi S, Hosseinzadeh H (2014) Magnetic and K+-cross-linked kappa-carrageenan nanocomposite beads and adsorption of crystal violet. Iran Polym J 23:335–344

    Article  CAS  Google Scholar 

  44. Mahdavinia GR, Massoudi A, Baghban A, Massoumi B (2012) Novel carrageenan-based hydrogel nanocomposites containing laponite RD and their application to remove cationic dye. Iran Polym J 21:609–619

    Article  CAS  Google Scholar 

  45. Mahdavinia GR, Bagheri-Marandi G, Kiani G, Pourjavadi A (2010) Semi-IPN carrageenan-based nanocomposite hydrogels: synthesis and swelling behavior. J Appl Polym Sci 118:2989–2997

    Article  CAS  Google Scholar 

  46. Mahdavinia GR, Aghaie H, Sheykhloie H, Vardini MT, Etemadi H (2013) Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet. Carbohydr Polym 98:358–365

    Article  CAS  Google Scholar 

  47. Deng S, Xu H, Jiang X, Yin J (2013) Poly(vinyl alcohol) (PVA)-enhanced hybrid hydrogels of hyperbranched poly(ether amine) (hPEA) for selective adsorption and separation of dyes. Macromolecules 46:2399–2406

    Article  CAS  Google Scholar 

  48. Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 153:37–65

    Article  CAS  Google Scholar 

  49. Holloway JL, Lowman AM, Palmese GR (2013) The role of crystallization and phase separation in the formation of physically cross-linked PVA hydrogels. Soft Matter 9:826–833

    Article  CAS  Google Scholar 

  50. Hernandez R, Lopez D, Mijangos C, Guenet JM (2002) A reappraisal of the ‘thermoreversible’ gelation of aqueous poly(vinyl alcohol) solutions through freezing-thawing cycles. Polymer 43:5661–5663

    Article  CAS  Google Scholar 

  51. Gonzalez JS, Alvarez VA (2011) The effect of the annealing on the poly(vinyl alcohol) obtained by freezing–thawing. Thermochim Acta 521:184–190

    Article  CAS  Google Scholar 

  52. Mallapragada SK, Peppas NA (1996) Dissolution mechanism of semicrystalline poly(vinylalcohol) in water. J Polym Sci B Polym Phys 34:1339–1346

    Article  CAS  Google Scholar 

  53. Morris R, Rees DA, Robinson G (1980) Cation-specific aggregation of carrageenan helices: domain model of polymer gel structure. J Mol Biol 138:349–362

    Article  CAS  Google Scholar 

  54. Pass G, Phillips OG, Wedlock DJ (1977) Interaction of univalent and divalent cations with carrageenans in aqueous solution. Macromolecules 10:197–201

    Article  CAS  Google Scholar 

  55. Bongaerts K, Reynaers H, Zanetti F, Paoletti S (1999) Equilibrium and nonequilibrium association processes of κ-carrageenan in aqueous salt solutions. Macromolecules 32:683–689

    Article  CAS  Google Scholar 

  56. Darvishi Z, Kabiri K, Zohuriaan-Mehr MJ, Morsali A (2011) Nanocomposite super-swelling hydrogels with nanorod bentonite. J Appl Polym Sci 120:3453–3459

    Article  CAS  Google Scholar 

  57. Chatterjee S, Chatterjee T, Lim SR, Woo SH (2011) Effect of the addition mode of carbon nanotubes for the production of chitosan hydrogel core-shell beads on adsorption of Congo red from aqueous solution. Bioresour Technol 102:4402–4409

    Article  CAS  Google Scholar 

  58. Bredy JE, Holum JR (1993) Chemistry. Wiley, New York

    Google Scholar 

  59. Gu YS, Decker EA, McClements DJ (2005) Influence of pH and carrageenan type on properties of beta-lactoglobulin stabilized oil-in-water emulsions. Food Hydrocoll 19:83–89

    Article  CAS  Google Scholar 

  60. Monvisade P, Siriphannon P (2009) Chitosan intercalated montmorillonite: preparation, characterization and cationic dye adsorption. Appl Clay Sci 42:427–431

    Article  CAS  Google Scholar 

  61. Hu Y, Guo T, Ye X, Li Q, Guo M, Liu H, Wu Z (2013) Dye adsorption by resins: effect of ionic strength on hydrophobic and electrostatic interactions. Chem Eng J 228:392–397

    Article  CAS  Google Scholar 

  62. Li Q, Yue Q, Sun H, Su Y, Gao B (2010) A comparative study on the properties, mechanisms and process designs for the adsorption of non-ionic or anionic dyes onto cationic–polymer/bentonite. J Environ Manag 91:1601–1611

    Article  CAS  Google Scholar 

  63. Ozcan A, Oncu EM, Ozcan S (2006) Adsoprtion of acid blue 193 from aqueous solutions onto DEDMA-sepiolite. J Hazard Mater B129:244–252

    Article  Google Scholar 

  64. Piccin JS, Gomes CS, Feris LA, Gutterres M (2012) Kinetics and isotherms of leather dye adsorption by tannery solid waste. Chem Eng J 183:30–38

    Article  CAS  Google Scholar 

  65. Hameed BH, Ahmad AA, Aziz N (2007) Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. Chem Eng J 133:195–203

    Article  CAS  Google Scholar 

  66. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. J Chem Eng 156:2–10

    Article  CAS  Google Scholar 

  67. Nandi BK, Goswami A, Das AK, Mondal B, Purkait MK (2008) Kinetic and equilibrium studies on the adsorption of crystal violet dye using kaolin as an adsorbent. Sep Sci Technol 43:1382–1403

    Article  CAS  Google Scholar 

  68. Mall ID, Srivastava VC, Agarwal NK (2006) Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ash—kinetic study and equilibrium isotherm analyses. Dyes Pigm 69:210–223

    Article  CAS  Google Scholar 

  69. El-Guendi M (1991) Adsorption of basic dye using activated carbon prepared from oil palm. Adsorpt Sci Technol 8:217–225

    Google Scholar 

  70. Otero M, Rozada F, Calvo LF, García AI, Morán A (2003) Elimination of organic water pollutants using adsorbents obtained from sewage sludge. Dyes Pig 57:55–65

    Article  CAS  Google Scholar 

  71. Eren E (2009) Removal of basic dye by modified Unye bentonite, Turkey. J Hazard Mater 162:1335–1363

    Google Scholar 

  72. Chao A, Shyu S, Lin Y, Mi F (2004) Enzymatic grafting of carboxyl groups on to chitosan-to confer on chitosan the property of a cationic dye adsorbent. Bioresour Technol 91:157–162

    Article  CAS  Google Scholar 

  73. Kaner D, Sarac A, Senkal BF (2010) Removal of dyes from water using crosslinked aminomethane sulfonic acid based resin. Environ Geochem Health 32:321–325

    Article  CAS  Google Scholar 

  74. Monash P, Niwas R, Pugazhenthi G (2011) Utilization of ball clay adsorbents for the removal of crystal violet dye from aqueous solution. Clean Technol Environ Policy 13:141–151

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Hosseinzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh, H., Zoroufi, S. & Mahdavinia, G.R. Study on adsorption of cationic dye on novel kappa-carrageenan/poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels. Polym. Bull. 72, 1339–1363 (2015). https://doi.org/10.1007/s00289-015-1340-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1340-5

Keywords

Navigation