Skip to main content
Log in

Towards efficient ciprofloxacin adsorption using magnetic hybrid nanoparticles prepared with κ-, ι-, and λ-carrageenan

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

The efficient removal of the antibiotic ciprofloxacin (CIP) from aqueous samples using magnetic nanosorbents prepared using three sulfated polysaccharides, κ-, ι- and λ-carrageenan and an alkoxysilane agent containing a reactive epoxide ring is described. The prepared nanosorbents were characterized in detail using FTIR spectroscopy, solid-state 29Si and 13C NMR spectroscopy and elemental microanalysis. The synthesis method was more effective for incorporating higher amounts of κ-carrageenan in the siliceous shells. Although being less sulfated, κ-carrageenan is cheaper than the other carrageenan tested. The CIP adsorption was a cooperative process, well described by the Dubinin–Radushkevich isotherm, with maximum adsorption capacities of 878, 969 and 865 mg/g for κ-, ι- and λ-carrageenan sorbents, respectively. Overall, the produced magnetic nanosorbents are among the best magnetic systems with high adsorptive efficiency for CIP. It is suggested that protonated CIP molecules are exchanged with ester sulfate counterions of carrageenan at the particles’ surface as the main pathway for CIP adsorption. The adsorption process was exothermic and entropically favorable for the three sorbents. However, at 298 K, the adsorption was spontaneous for κ-carrageenan-based sorbents and non-spontaneous for ι- and λ-carrageenan particles. The magnetic sorbents could be reused and maintained their ability towards CIP removal up to four cycles. The removal efficiency in wastewater was enhanced with the sorbent dose.

Graphical abstract

Magnetic carrageenan nanosorbents were prepared using three carrageenan polysaccharides (κ-, ι-, and λ-carrageenan). The resulting magnetic particles removed the antibiotic ciprofloxacin efficiently from ultra-pure water and wastewater samples. Magnetic features enabled the fast magnetic separation of the nanosorbents from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sabri, N.A., van Holst, S., Schmitt, H., et al.: Fate of antibiotics and antibiotic resistance genes during conventional and additional treatment technologies in wastewater treatment plants. Sci. Total Environ. 741, 140199 (2020)

    Article  CAS  PubMed  Google Scholar 

  2. Tavengwa, N.T., Moyo, B., Musarurwa, H., et al.: Challenges and future directions in the analysis of emerging pollutants in aqueous environments. In: Dalu, T., Tavengwa, N.T. (eds.) Emerging Freshwater Pollutants, pp. 373–379. Elsevier (2022)

    Chapter  Google Scholar 

  3. Sanganyado, E., Kajau, T.A.: The fate of emerging pollutants in aquatic systems: an overview. In: Dalu, T., Tavengwa, N.T. (eds.) Emerging Freshwater Pollutants, pp. 119–135. Elsevier (2022)

    Chapter  Google Scholar 

  4. Burke, V., Richter, D., Greskowiak, J., et al.: Occurrence of antibiotics in surface and groundwater of a drinking water catchment area in germany. Water Environ. Res. 88, 652–659 (2016)

    Article  CAS  PubMed  Google Scholar 

  5. Boy-Roura, M., Mas-Pla, J., Petrovic, M., et al.: Towards the understanding of antibiotic occurrence and transport in groundwater: findings from the Baix Fluvià alluvial aquifer (NE Catalonia, Spain). Sci. Total Environ. 612, 1387–1406 (2018)

    Article  CAS  PubMed  Google Scholar 

  6. Gu, D., Feng, Q., Guo, C., et al.: Occurrence and risk assessment of antibiotics in manure, soil, wastewater, groundwater from livestock and poultry farms in Xuzhou, China. Bull. Environ. Contam. Toxicol. 103, 590–596 (2019)

    Article  CAS  PubMed  Google Scholar 

  7. Van Doorslaer, X., Dewulf, J., Van Langenhove, H., Demeestere, K.: Fluoroquinolone antibiotics: an emerging class of environmental micropollutants. Sci. Total Environ. 500, 250–269 (2014)

    Article  PubMed  Google Scholar 

  8. Rasheed, T., Bilal, M., Nabeel, F., et al.: Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environ. Int. 122, 52–66 (2019)

    Article  CAS  PubMed  Google Scholar 

  9. Sivagami, K., Vignesh, V.J., Srinivasan, R., et al.: Antibiotic usage, residues and resistance genes from food animals to human and environment: an Indian scenario. J. Environ. Chem. Eng. 8, 102221 (2020)

    Article  CAS  Google Scholar 

  10. Ahmadzadeh, S., Asadipour, A., Pournamdari, M., et al.: Removal of ciprofloxacin from hospital wastewater using electrocoagulation technique by aluminum electrode: optimization and modelling through response surface methodology. Process Saf. Environ. Prot. 109, 538–547 (2017)

    Article  CAS  Google Scholar 

  11. El-Shafey, E.-S.I., Al-Lawati, H., Al-Sumri, A.S.: Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets. J. Environ. Sci. 24, 1579–1586 (2012)

    Article  CAS  Google Scholar 

  12. Igwegbe, C.A., Oba, S.N., Aniagor, C.O., et al.: Adsorption of ciprofloxacin from water: a comprehensive review. J. Ind. Eng. Chem. 93, 57–77 (2021)

    Article  CAS  Google Scholar 

  13. Zhang, X., Tang, Y., Zhang, F., Lee, C.-S.: A novel aluminum-graphite dual-ion battery. Adv. Energy Mater. 6, 1502588 (2016)

    Article  Google Scholar 

  14. Wang, M., Jiang, C., Zhang, S., et al.: Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10, 667–672 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. Mu, S., Liu, Q., Kidkhunthod, P., et al.: Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries. Natl. Sci. Rev. 8, 1–12 (2020)

    Google Scholar 

  16. Chen, X., Wang, D., Wang, T., et al.: Enhanced photoresponsivity of a GaAs nanowire metal-semiconductor-metal photodetector by adjusting the fermi level. ACS Appl. Mater. Interfaces. 11, 33188–33193 (2019)

    Article  CAS  PubMed  Google Scholar 

  17. Li, H., Tang, J., Kang, Y., et al.: Optical properties of quasi-type-II structure in GaAs/GaAsSb/GaAs coaxial single quantum-well nanowires. Appl. Phys. Lett. 113, 233104 (2018)

    Article  Google Scholar 

  18. Tang, X., Wu, J., Wu, W., et al.: Competitive-type pressure-dependent immunosensor for highly sensitive detection of diacetoxyscirpenol in wheat via monoclonal antibody. Anal. Chem. 92, 3563–3571 (2020)

    Article  CAS  PubMed  Google Scholar 

  19. Zhu, W., Deng, M., Chen, D., et al.: Dual-phase CsPbCl3–Cs4PbCl6 perovskite films for self-powered, visible-blind UV photodetectors with fast response. ACS Appl. Mater. Interfaces. 12, 32961–32969 (2020)

    Article  CAS  PubMed  Google Scholar 

  20. Xu, P., Cao, J., Yin, C., et al.: Quantum chemical study on the adsorption of megazol drug on the pristine BC3 nanosheet. Supramol. Chem. 33, 63–69 (2021)

    Article  CAS  Google Scholar 

  21. Zhao, C., Xi, M., Huo, J., et al.: Electro-reduction of N2 on nanostructured materials and the design strategies of advanced catalysts based on descriptors. Mater. Today Phys. 22, 100609 (2022)

    Article  CAS  Google Scholar 

  22. Girardi, C., Greve, J., Lamshöft, M., et al.: Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities. J. Hazard. Mater. 198, 22–30 (2011)

    Article  CAS  PubMed  Google Scholar 

  23. Wei, X., Chen, J., Xie, Q., et al.: Distinct photolytic mechanisms and products for different dissociation species of ciprofloxacin. Environ. Sci. Technol. 47, 4284–4290 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. Couto, C.F., Santos, A.V., Amaral, M.C.S., et al.: Assessing potential of nanofiltration, reverse osmosis and membrane distillation drinking water treatment for pharmaceutically active compounds (PhACs) removal. J. Water Process Eng. 33, 101029 (2020)

    Article  Google Scholar 

  25. Mu, Y., Huang, C., Li, H., Chen, L., et al.: Electrochemical degradation of ciprofloxacin with a Sb-doped SnO2 electrode: performance, influencing factors and degradation pathways. RSC Adv. 9, 29796–29804 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fallah, Z., Zare, E.N., Ghomi, M., et al.: Toxicity and remediation of pharmaceuticals and pesticides using metal oxides and carbon nanomaterials. Chemosphere 275, 130055 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Biswal, B.K., Balasubramanian, R.: Adsorptive removal of sulfonamides, tetracyclines and quinolones from wastewater and water using carbon-based materials: Recent developments and future directions. J. Clean. Prod. 349, 131421 (2022)

    Article  CAS  Google Scholar 

  28. Ahmad, I., Siddiqui, W.A., Ahmad, T.: Synthesis and characterization of molecularly imprinted magnetite nanomaterials as a novel adsorbent for the removal of heavy metals from aqueous solution. J. Mater. Res. Technol. 8, 4239–4252 (2019)

    Article  CAS  Google Scholar 

  29. Soares, S.F., Fernandes, T., Trindade, T., Daniel-da-Silva, A.L.: Recent advances on magnetic biosorbents and their applications for water treatment. Environ. Chem. Lett. 18, 151–164 (2020)

    Article  CAS  Google Scholar 

  30. Zare, E.N., Mudhoo, A., Khan, M.A., et al.: Water decontamination using bio-based, chemically functionalized, doped, and ionic liquid-enhanced adsorbents: review. Environ. Chem. Lett. 19, 3075–3114 (2021)

    Article  CAS  Google Scholar 

  31. Theamwong, N., Intarabumrung, W., Sangon, S., et al.: Activated carbons from waste Cassia bakeriana seed pods as high-performance adsorbents for toxic anionic dye and ciprofloxacin antibiotic remediation. Bioresour. Technol. 341, 125832 (2021)

    Article  CAS  PubMed  Google Scholar 

  32. Wang, X., Wang, Y., Zhao, C., et al.: Ciprofloxacin removal by ultrasound-enhanced carbon nanotubes/permanganate process: in situ generation of free reactive manganese species via electron transfer. Water Res. 202, 117393 (2021)

    Article  CAS  PubMed  Google Scholar 

  33. Huang, X., Tian, J., Li, Y., et al.: Preparation of a three-dimensional porous graphene oxide–kaolinite–poly(vinyl alcohol) composite for efficient adsorption and removal of ciprofloxacin. Langmuir 36, 10895–10904 (2020)

    Article  CAS  PubMed  Google Scholar 

  34. Hu, Y., Pan, C., Zheng, X., et al.: Removal of ciprofloxacin with aluminum-pillared kaolin sodium alginate beads (CA-Al-KABs): kinetics, isotherms, and BBD model. Water (Basel) 12, 905 (2020)

    CAS  Google Scholar 

  35. Falyouna, O., Maamoun, I., Bensaida, K., et al.: Encapsulation of iron nanoparticles with magnesium hydroxide shell for remarkable removal of ciprofloxacin from contaminated water. J. Colloid Interface Sci. 605, 813–827 (2022)

    Article  CAS  PubMed  Google Scholar 

  36. Laabd, M., Brahmi, Y., el Ibrahimi, B., et al.: A novel mesoporous Hydroxyapatite@Montmorillonite hybrid composite for high-performance removal of emerging Ciprofloxacin antibiotic from water: Integrated experimental and Monte Carlo computational assessment. J. Mol. Liq. 338, 116705 (2021)

    Article  CAS  Google Scholar 

  37. Yang, Y., Zhong, Z., Li, J., et al.: Efficient with low-cost removal and adsorption mechanisms of norfloxacin, ciprofloxacin and ofloxacin on modified thermal kaolin: experimental and theoretical studies. J. Hazard. Mater. 430, 128500 (2022)

    Article  CAS  PubMed  Google Scholar 

  38. Jiang, W.-T., Chang, P.-H., Wang, Y.-S., et al.: Removal of ciprofloxacin from water by birnessite. J. Hazard. Mater. 250, 362–369 (2013)

    Article  PubMed  Google Scholar 

  39. Soares, S.F., Rocha, M.J., Ferro, M., et al.: Magnetic nanosorbents with siliceous hybrid shells of alginic acid and carrageenan for removal of ciprofloxacin. Int. J. Biol. Macromol. 139, 827–841 (2019)

    Article  CAS  PubMed  Google Scholar 

  40. Yaashikaa, P.R., Senthil Kumar, P., Karishma, S.: Review on biopolymers and composites—evolving material as adsorbents in removal of environmental pollutants. Environ. Res. 212, 113114 (2022)

    Article  CAS  PubMed  Google Scholar 

  41. Dang, B.-T., Bui, X.-T., Tran, D.P.H., et al.: Current application of algae derivatives for bioplastic production: a review. Bioresour. Technol. 347, 126698 (2022)

    Article  CAS  PubMed  Google Scholar 

  42. Guo, Z., Wei, Y., Zhang, Y., et al.: Carrageenan oligosaccharides: a comprehensive review of preparation, isolation, purification, structure, biological activities and applications. Algal Res. 61, 102593 (2022)

    Article  Google Scholar 

  43. Zia, K.M., Tabasum, S., Nasif, M., et al.: A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int. J. Biol. Macromol. 96, 282–301 (2017)

    Article  CAS  PubMed  Google Scholar 

  44. Papageorgiou, M., Nanaki, S., Kyzas, G., et al.: Novel isocyanate-modified carrageenan polymer materials: preparation, characterization and application adsorbent materials of pharmaceuticals. Polymers (Basel). 9, 595 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  45. Soares, S.F., Simões, T.R., António, M., et al.: Hybrid nanoadsorbents for the magnetically assisted removal of metoprolol from water. Chem. Eng. J. 302, 560–569 (2016)

    Article  CAS  Google Scholar 

  46. Sharma, G., Khosla, A., Kumar, A., et al.: A comprehensive review on the removal of noxious pollutants using carrageenan based advanced adsorbents. Chemosphere 289, 133100 (2022)

    Article  CAS  PubMed  Google Scholar 

  47. Mohd Yusop, H., Mohd Ismail, A.I.H., Wan Ismail, W.N.: Preparation and characterization of new sol–gel hybrid inulin–TEOS adsorbent. Polymers (Basel). 13, 1295 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  48. Benvenuti, J., Giraldi Fisch, A., Zimnoch Dos Santos, J.H., Gutterres, M.: Hybrid sol–gel silica adsorbent material based on grape stalk applied to cationic dye removal. Environ. Prog. Sustain. Energy. 39, 1–10 (2020)

    Article  Google Scholar 

  49. Samiey, B., Cheng, C.-H., Wu, J.: Organic-inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: a review. Materials. 7, 673–726 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Soares, S.F., Fateixa, S., Trindade, T., Daniel-da-Silva, A.L.: A versatile synthetic route towards gelatin-silica hybrids and magnetic composite colloidal nanoparticles. Adv. Compos. Hybrid. Mater. (2021). https://doi.org/10.1007/s42114-021-00386-y

    Article  Google Scholar 

  51. Huang, Y., Keller, A.A.: Magnetic nanoparticle adsorbents for emerging organic contaminants. ACS Sustain. Chem. Eng. 1, 731–736 (2013)

    Article  CAS  Google Scholar 

  52. Kharissova, O.V., Dias, H.V.R., Kharisov, B.I.: Magnetic adsorbents based on micro- and nano-structured materials. RSC Adv. 5, 6695–6719 (2015)

    Article  CAS  Google Scholar 

  53. Malek, N.N.A., Jawad, A.H., Ismail, K., et al.: Fly ash modified magnetic chitosan-polyvinyl alcohol blend for reactive orange 16 dye removal: adsorption parametric optimization. Int. J. Biol. Macromol. 189, 464–476 (2021)

    Article  CAS  PubMed  Google Scholar 

  54. Reghioua, A., Barkat, D., Jawad, A.H., et al.: Parametric optimization by Box-Behnken design for synthesis of magnetic chitosan-benzil/ZnO/Fe3O4 nanocomposite and textile dye removal. J. Environ. Chem. Eng. 9, 105166 (2021)

    Article  CAS  Google Scholar 

  55. Soares, S.F., Fernandes, T., Sacramento, M., et al.: Magnetic quaternary chitosan hybrid nanoparticles for the efficient uptake of diclofenac from water. Carbohydr. Polym. 203, 35–44 (2019)

    Article  CAS  PubMed  Google Scholar 

  56. Oliveira-Silva, R., Pinto da Costa, J., Vitorino, R., Daniel-da-Silva, A.L.: Magnetic chelating nanoprobes for enrichment and selective recovery of metalloproteases from human saliva. J. Mater. Chem. B. 3, 238–249 (2015)

    Article  CAS  PubMed  Google Scholar 

  57. Stöber, W., Fink, A., Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968)

    Article  Google Scholar 

  58. Soares, S.F., Amorim, C.O., Amaral, J.S., et al.: On the efficient removal, regeneration and reuse of quaternary chitosan magnetite nanosorbents for glyphosate herbicide in water. J. Environ. Chem. Eng. 9, 105189 (2021)

    Article  CAS  Google Scholar 

  59. Gómez-Ordóñez, E., Rupérez, P.: FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocoll. 25, 1514–1520 (2011)

    Article  Google Scholar 

  60. Prado-Fernández, J., Rodrı́guez-Vázquez, J.A., Tojo, E., Andrade, J.M.: Quantitation of κ-, ι- and λ-carrageenans by mid-infrared spectroscopy and PLS regression. Anal. Chim. Acta. 480, 23–37 (2003)

    Article  Google Scholar 

  61. Pereira, L., Amado, A.M., Critchley, A.T., et al.: Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocoll. 23, 1903–1909 (2009)

    Article  CAS  Google Scholar 

  62. Pereira, L., Gheda, S.F., Ribeiro-Claro, P.J.A.: Analysis by vibrational spectroscopy of seaweed polysaccharides with potential use in food, pharmaceutical, and cosmetic industries. Int. J. Carbohydr. Chem. 2013, 1–7 (2013)

    Article  Google Scholar 

  63. Soares, S.F., Fernandes, T., Trindade, T., Daniel-da-Silva, A.L.: Trimethyl chitosan/siloxane-hybrid coated Fe3O4 nanoparticles for the uptake of sulfamethoxazole from water. Molecules 24, 1958 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, N., Teng, H., Li, L., et al.: Synthesis of phosphated k-carrageenan and its application for flame-retardant waterborne epoxy. Polymers (Basel). 10, 1268 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  65. Soares, S.F., Trindade, T., Daniel-da-Silva, A.L.: Carrageenan-silica hybrid nanoparticles prepared by a non-emulsion method. Eur. J. Inorg. Chem. 2015, 4588–4594 (2015)

    Article  CAS  Google Scholar 

  66. Ouyang, Z.-W., Chen, E.-C., Wu, T.-M.: Thermal stability and magnetic properties of polyvinylidene fluoride/magnetite nanocomposites. Materials 8, 4553–4564 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mahdavinia, G.R., Massoudi, A., Baghban, A., Shokri, E.: Study of adsorption of cationic dye on magnetic kappa-carrageenan/PVA nanocomposite hydrogels. J. Environ. Chem. Eng. 2, 1578–1587 (2014)

    Article  CAS  Google Scholar 

  68. Long, J., Wu, Z., Li, X., et al.: New method for the immobilization of pullulanase onto hybrid magnetic (Fe3O4–κ-carrageenan) nanoparticles by electrostatic coupling with pullulanase/chitosan complex. J. Agric. Food Chem. 63, 3534–3542 (2015)

    Article  CAS  PubMed  Google Scholar 

  69. Kulal, P., Badalamoole, V.: Hybrid nanocomposite of kappa-carrageenan and magnetite as adsorbent material for water purification. Int. J. Biol. Macromol. 165, 542–553 (2020)

    Article  CAS  PubMed  Google Scholar 

  70. Silva, R.R., Salvi, D.T.B., Santos, M.V., et al.: Multifunctional organic–inorganic hybrids based on cellulose acetate and 3-glycidoxypropyltrimethoxysilane. J. Sol-Gel Sci. Technol. 81, 114–126 (2017)

    Article  CAS  Google Scholar 

  71. Vueva, Y., Connell, L.S., Chayanun, S., et al.: Silica/alginate hybrid biomaterials and assessment of their covalent coupling. Appl. Mater. Today. 11, 1–12 (2018)

    Article  Google Scholar 

  72. van de Velde, F., Pereira, L., Rollema, H.S.: The revised NMR chemical shift data of carrageenans. Carbohydr. Res. 339, 2309–2313 (2004)

    Article  PubMed  Google Scholar 

  73. Turquois, T., Acquistapace, S., Vera, F.A., Welti, D.H.: Composition of carrageenan blends inferred from 13C-NMR and infrared spectroscopic analysis. Carbohydr. Polym. 31, 269–278 (1996)

    Article  CAS  Google Scholar 

  74. Silva, F.R.F., Dore, C.M.P.G., Marques, C.T., et al.: Anticoagulant activity, paw edema and pleurisy induced carrageenan: action of major types of commercial carrageenans. Carbohydr. Polym. 79, 26–33 (2010)

    Article  CAS  Google Scholar 

  75. Babonneau, F., Baccile, N., Laurent, G., et al.: Solid-state nuclear magnetic resonance: A valuable tool to explore organic-inorganic interfaces in silica-based hybrid materials. C. R. Chim. 13, 58–68 (2010)

    Article  CAS  Google Scholar 

  76. Barberena-Fernández, A.M., Carmona-Quiroga, P.M., Blanco-Varela, M.T.: Interaction of TEOS with cementitious materials: Chemical and physical effects. Cem. Concr. Compos. 55, 145–152 (2015)

    Article  Google Scholar 

  77. Chen, L., Yuan, T., Ni, R., et al.: Multivariate optimization of ciprofloxacin removal by polyvinylpyrrolidone stabilized NZVI/Cu bimetallic particles. Chem. Eng. J. 365, 183–192 (2019)

    Article  CAS  Google Scholar 

  78. Schefer, L., Adamcik, J., Mezzenga, R.: Unravelling secondary structure changes on individual anionic polysaccharide chains by atomic force microscopy. Angew. Chem. Int. Ed. 53, 5376–5379 (2014)

    Article  CAS  Google Scholar 

  79. Khan, N.A., Najam, T., Shah, S.S.A., et al.: Development of Mn-PBA on GO sheets for adsorptive removal of ciprofloxacin from water: kinetics, isothermal, thermodynamic and mechanistic studies. Mater. Chem. Phys. 245, 122737 (2020)

    Article  CAS  Google Scholar 

  80. Lagergren, S.: Zur theorie der sogenannten adsorption gelöster stoffe. Springer-Verlag (1907)

    Google Scholar 

  81. Ho, Y.S., McKay, G.: Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465 (1999)

    Article  CAS  Google Scholar 

  82. Chien, S.H., Clayton, W.R.: Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci. Soc. Am. J. 44, 265 (1980)

    Article  CAS  Google Scholar 

  83. Bui, T.X., Choi, H.: Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15. J. Hazard. Mater. 168, 602–608 (2009)

    Article  CAS  PubMed  Google Scholar 

  84. Sotelo, J.L., Rodríguez, A.R., Mateos, M.M., et al.: Adsorption of pharmaceutical compounds and an endocrine disruptor from aqueous solutions by carbon materials. J. Environ. Sci. Health Part B 47, 640–652 (2012)

    Article  CAS  Google Scholar 

  85. Wu, F.-C., Tseng, R.-L., Juang, R.-S.: Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem. Eng. J. 150, 366–373 (2009)

    Article  CAS  Google Scholar 

  86. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  CAS  Google Scholar 

  87. Freundlich, H.Z.: Concerning adsorption in solutions. Z. Phys. Chem. 57, 444–448 (1906)

    Google Scholar 

  88. Dubinin, M.M., Radushkevich, L.V.: Equation of the characteristic curve of activated charcoal. Proc. Acad. Sci. USSR Sect. C Phys. Chem. 55, 331–333 (1947)

    Google Scholar 

  89. Togue Kamga, F.: Modeling adsorption mechanism of paraquat onto Ayous (Triplochiton scleroxylon) wood sawdust. Appl. Water Sci. 9, 1 (2019)

    Article  CAS  Google Scholar 

  90. Ayawei, N., Ebelegi, A.N., Wankasi, D.: Modelling and interpretation of adsorption isotherms. J. Chem. 2017, 3039817 (2017)

    Article  Google Scholar 

  91. Çelebi, O., Üzüm, Ç., Shahwan, T., Erten, H.N.: A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron. J. Hazard. Mater. 148, 761–767 (2007)

    Article  PubMed  Google Scholar 

  92. Mutavdžić Pavlović, D., Ćurković, L., Grčić, I., et al.: Isotherm, kinetic, and thermodynamic study of ciprofloxacin sorption on sediments. Environ. Sci. Pollut. Res. 24, 10091–10106 (2017)

    Article  Google Scholar 

  93. Awe, A.A., Opeolu, B.O., Fatoki, O.S., et al.: Preparation and characterisation of activated carbon from Vitisvinifera leaf litter and its adsorption performance for aqueous phenanthrene. Appl. Biol. Chem. 63, 12 (2020)

    Article  CAS  Google Scholar 

  94. Nazraz, M., Yamini, Y., Asiabi, H.: Chitosan-based sorbent for efficient removal and extraction of ciprofloxacin and norfloxacin from aqueous solutions. Mikrochim. Acta. 186, 459 (2019)

    Article  PubMed  Google Scholar 

  95. Wang, Y.X., Ngo, H.H., Guo, W.S.: Preparation of a specific bamboo based activated carbon and its application for ciprofloxacin removal. Sci. Total Environ. 533, 32–39 (2015)

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, B., Han, X., Gu, P., et al.: Response surface methodology approach for optimization of ciprofloxacin adsorption using activated carbon derived from the residue of desilicated rice husk. J. Mol. Liq. 238, 316–325 (2017)

    Article  CAS  Google Scholar 

  97. Huang, L., Wang, M., Shi, C., et al.: Adsorption of tetracycline and ciprofloxacin on activated carbon prepared from lignin with H3PO4 activation. Desalin. Water Treat. 52, 2678–2687 (2014)

    Article  CAS  Google Scholar 

  98. Privar, Y., Shashura, D., Pestov, A., et al.: Metal-chelate sorbents based on carboxyalkylchitosans: Ciprofloxacin uptake by Cu(II) and Al(III)-chelated cryogels of N-(2-carboxyethyl)chitosan. Int. J. Biol. Macromol. 131, 806–811 (2019)

    Article  CAS  PubMed  Google Scholar 

  99. Zhuang, Y., Yu, F., Ma, J., Chen, J.: Enhanced adsorption removal of antibiotics from aqueous solutions by modified alginate/graphene double network porous hydrogel. J. Colloid Interface Sci. 507, 250–259 (2017)

    Article  CAS  PubMed  Google Scholar 

  100. Li, L., Zhao, J., Sun, Y., et al.: Ionically cross-linked sodium alginate/ĸ-carrageenan double-network gel beads with low-swelling, enhanced mechanical properties, and excellent adsorption performance. Chem. Eng. J. 372, 1091–1103 (2019)

    Article  CAS  Google Scholar 

  101. Wang, F., Yang, B., Wang, H., et al.: Removal of ciprofloxacin from aqueous solution by a magnetic chitosan grafted graphene oxide composite. J. Mol. Liq. 222, 188–194 (2016)

    Article  CAS  Google Scholar 

  102. Zhou, Y., Cao, S., Xi, C., et al.: A novel Fe3O4/graphene oxide/citrus peel-derived bio-char based nanocomposite with enhanced adsorption affinity and sensitivity of ciprofloxacin and sparfloxacin. Bioresour. Technol. 292, 121951 (2019)

    Article  CAS  PubMed  Google Scholar 

  103. Álvarez-Torrellas, S., Peres, J.A., Gil-Álvarez, V., et al.: Effective adsorption of non-biodegradable pharmaceuticals from hospital wastewater with different carbon materials. Chem. Eng. J. 320, 319–329 (2017)

    Article  Google Scholar 

  104. Yu, F., Cui, T., Yang, C., et al.: κ-Carrageenan/Sodium alginate double-network hydrogel with enhanced mechanical properties, anti-swelling, and adsorption capacity. Chemosphere 237, 124417 (2019)

    Article  PubMed  Google Scholar 

  105. Rasoulzadeh, H., Mohseni-Bandpei, A., Hosseini, M., Safari, M.: Mechanistic investigation of ciprofloxacin recovery by magnetite–imprinted chitosan nanocomposite: Isotherm, kinetic, thermodynamic and reusability studies. Int. J. Biol. Macromol. 133, 712–721 (2019)

    Article  CAS  PubMed  Google Scholar 

  106. Zhao, P., Yu, F., Wang, R., et al.: Sodium alginate/graphene oxide hydrogel beads as permeable reactive barrier material for the remediation of ciprofloxacin-contaminated groundwater. Chemosphere 200, 612–620 (2018)

    Article  CAS  PubMed  Google Scholar 

  107. Saha, P., Chowdhury, S.: Insight into adsorption thermodynamics. In: Tadashi, M. (ed.) Thermodynamics, pp. 349–364. InTech, Vienna (2011)

    Google Scholar 

  108. Husein, D.Z.: Adsorption and removal of mercury ions from aqueous solution using raw and chemically modified Egyptian mandarin peel. Desalin. Water Treat. 51, 6761–6769 (2013)

    Article  CAS  Google Scholar 

  109. Liu, S.: Cooperative adsorption on solid surfaces. J. Colloid Interface Sci. 450, 224–238 (2015)

    Article  CAS  PubMed  Google Scholar 

  110. Maheshwari, M., Vyas, R.K., Sharma, M.: Kinetics, equilibrium and thermodynamics of ciprofloxacin hydrochloride removal by adsorption on coal fly ash and activated alumina. Desalin. Water Treat. 51, 7241–7254 (2013)

    Article  CAS  Google Scholar 

  111. Soares, S.F., Simões, T.R., Trindade, T., Daniel-da-Silva, A.L.: Highly efficient removal of dye from water using magnetic carrageenan/silica hybrid nano-adsorbents. Water Air Soil Poll. 228, 87 (2017)

    Article  Google Scholar 

  112. Nemati Sani, O., Navaei fezabady, A.A., Yazdani, M., Taghavi, M.: Catalytic ozonation of ciprofloxacin using γ-Al2O3 nanoparticles in synthetic and real wastewaters. J. Water Process Eng. 32, 100894 (2019)

    Article  Google Scholar 

  113. Das, S., Barui, A., Adak, A.: Montmorillonite impregnated electrospun cellulose acetate nanofiber sorptive membrane for ciprofloxacin removal from wastewater. J. Water Process Eng. 37, 101497 (2020)

    Article  Google Scholar 

  114. Wang, C.-J., Li, Z., Jiang, W.T., et al.: Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite. J. Hazard. Mater. 183, 309–314 (2010)

    Article  CAS  PubMed  Google Scholar 

  115. Wang, Y., Nie, Q., Huang, B., et al.: Removal of ciprofloxacin as an emerging pollutant: a novel application for bauxite residue reuse. J. Clean. Prod. 253, 120049 (2020)

    Article  CAS  Google Scholar 

  116. Wang, W., Cheng, J., Jin, J., et al.: Effect of humic acid on ciprofloxacin removal by magnetic multifunctional resins. Sci. Rep. 6, 30331 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ma, S., Si, Y., Wang, F., et al.: Interaction processes of ciprofloxacin with graphene oxide and reduced graphene oxide in the presence of montmorillonite in simulated gastrointestinal fluids. Sci. Rep. 7, 2588 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  118. Inglezakis, V.J., Poulopoulos, S.G., Kazemian, H.: Insights into the S-shaped sorption isotherms and their dimensionless forms. Micropor. Mesopor. Mat. 272, 166–176 (2018)

    Article  CAS  Google Scholar 

  119. Li, J., Beuerman, R., Verma, C.: The effect of molecular shape on oligomerization of hydrophobic drugs: molecular simulations of ciprofloxacin and nutlin. J. Chem. Phys. 148, 104902 (2018)

    Article  PubMed  Google Scholar 

  120. Pavli, M., Baumgartner, S., Kos, P., Kogej, K.: Doxazosin–carrageenan interactions: a novel approach for studying drug–polymer interactions and relation to controlled drug release. Int. J. Pharm. 421, 110–119 (2011)

    Article  CAS  PubMed  Google Scholar 

  121. Liu, X., Lu, S., Liu, Y., et al.: Adsorption of sulfamethoxazole (SMZ) and ciprofloxacin (CIP) by humic acid (HA): characteristics and mechanism. RSC Adv. 7, 50449–50458 (2017)

    Article  CAS  Google Scholar 

  122. Zhang, H., Khanal, S.K., Jia, Y., et al.: Fundamental insights into ciprofloxacin adsorption by sulfate-reducing bacteria sludge: Mechanisms and thermodynamics. Chem. Eng. J. 378, 122103 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020, UIDP/50011/2020 & LA/P/0006/2020, financed by national funds through the FCT/MEC (PIDDAC). The authors thank the RNME (National Electronic Microscopy Network) for microscopy facilities. S. F. Soares thanks the Fundação para a Ciência e Tecnologia (FCT) for the PhD Grant SFRH/BD/121366/2016. J. Nogueira thanks the Fundação para a Ciência e Tecnologia (FCT) for the PhD Grant SFRH/BD/146249/2019. A. L. D.-d.-S. acknowledges FCT for the research contract under the Program' Investigador FCT' 2014 and for funding from the project IF/00405/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana L. Daniel-da-Silva.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9099 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, S.F., Nogueira, J., Trindade, T. et al. Towards efficient ciprofloxacin adsorption using magnetic hybrid nanoparticles prepared with κ-, ι-, and λ-carrageenan. J Nanostruct Chem 13, 283–302 (2023). https://doi.org/10.1007/s40097-022-00498-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-022-00498-x

Keywords

Navigation