Skip to main content

Advertisement

Log in

Synergistic Catalytic Effect of Thermite Nanoparticles on HMX Thermal Decomposition

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Even though HMX is one of the most vigorous energetic materials for solid propellants, explosives, and pyrotechnics; it has high thermal stability and low sensitivity to common catalysts. Metal oxides with hydrous surface can release active \(\dot{\text{{O}}}\)H radicals at low temperature. These active radicals could attack HMX heterocyclic ring and alter HMX decomposition mechanism form C-H bond cleave to hydrogen atom abstraction. This study reports on the facile synthesis of Fe2O3 nanoparticles (NPs) of 8 nm average particle size. Aluminum NPs of 80 nm was employed in combination with Fe2O3 NPS; this nanothermite binary mixture can induce not only catalytic effect but also vigorously-exothermic thermite reaction with high heat output. Colloidal thermite mixture Fe2O3/Al was effectively-integrated into HMX crystals via co-precipitation technique. Uniform distribution of nanothermite particles into HMX was confirmed via elemental mapping using EDAX. Nanothermite mixture as high energy density material offered an increase in HMX total heat release by 82% using DSC. Furthermore, nanothermite particles offered superior catalytic effect with decrease in HMX activation energy by 25% using Kissinger method. Kinetic decomposition parameters using KAS model were found to be in good agreement with Kissinger's model. Colloidal nanothermite particles can act as high energy density material, and as a catalyst with decrease in required activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S. Elbasuney, M. Yehia, Ammonium perchlorate encapsulated with TiO2 nanocomposite for catalyzed combustion reactions. J. Inorg. Organomet. Polym Mater. 29(4), 1349–1357 (2019)

    Article  CAS  Google Scholar 

  2. S. Elbasuney, Novel colloidal nanothermite particles (MnO2/Al) for advanced highly energetic systems. J. Inorg. Organomet. Polym Mater. 28(5), 1793–1800 (2018)

    Article  CAS  Google Scholar 

  3. S. Elbasuney et al., Novel high energy density material based on metastable intermolecular nanocomposite. J. Inorg. Organomet. Polym Mater. 30(10), 3980–3988 (2020)

    Article  CAS  Google Scholar 

  4. S. Elbasuney, G.S. El-Sayyad, The potentials of TiO2 nanocatalyst on HMX thermolysis. J. Mater. Sci. 31(17), 14930–14940 (2020)

    CAS  Google Scholar 

  5. A.M.A. Elghafour et al., Highly energetic nitramines: a novel platonizing agent for double-base propellants with superior combustion characteristics. Fuel 227, 478–484 (2018)

    Article  CAS  Google Scholar 

  6. S. Elbasuney et al., Chemical stability, thermal behavior, and shelf life assessment of extruded modified double-base propellants. Defence Technol. 14(1), 70–76 (2018)

    Article  Google Scholar 

  7. S. Elbasuney, M. Yehia, Ferric oxide colloid: a novel nano-catalyst for solid propellants. J. Inorg. Organomet. Polym. Mater. 30(3), 706–713 (2020)

    Article  CAS  Google Scholar 

  8. S. Elbasuney et al., Infrared signature of novel super-thermite (Fe2O3/Mg) fluorocarbon nanocomposite for effective countermeasures of infrared seekers. J. Inorg. Organomet. Polym Mater. 28(5), 1718–1727 (2018)

    Article  CAS  Google Scholar 

  9. V.E. Zarko, A.A. Gromov (eds.), Energetic Nanomaterials Synthesis, Characterization, and Application (Elsevier, Amsterdam, 2016)

    Google Scholar 

  10. R. Dubey et al., Synthesis, characterization and catalytic behavior of Cu nanoparticles on the thermal decomposition of AP, HMX, NTO and composite solid propellants, Part 83. Thermochim. Acta 549, 102–109 (2012)

    Article  CAS  Google Scholar 

  11. J. Wei et al., 0D Cu(II) and 1D mixed-valence Cu(I)/Cu(II) coordination compounds based on mixed ligands: Syntheses, structures and catalytic thermal decomposition for HMX. Inorg. Chem. Commun. 30, 13–16 (2013)

    Article  CAS  Google Scholar 

  12. S. Elbasuney, M. Gobara, M. Yehia, Ferrite nanoparticles: synthesis, characterization, and catalytic activity evaluation for solid rocket propulsion systems. J. Inorg. Organomet. Polym. Mater. 29(3), 721–729 (2019)

    Article  CAS  Google Scholar 

  13. S. Elbasuney, Steric stabilization of colloidal aluminium particles for advanced metalized-liquid rocket propulsion systems. Combust. Explos. Shock Waves 55(3), 353–360 (2019)

    Article  Google Scholar 

  14. S. Elbasuney, A. Fahd, Combustion wave of metalized extruded double-base propellants. Fuel 237, 1274–1280 (2019)

    Article  CAS  Google Scholar 

  15. K.R. Reddy et al., Synthesis of electrically conductive and superparamagnetic monodispersed iron oxide-conjugated polymer composite nanoparticles by in situ chemical oxidative polymerization. J. Colloid Interface Sci. 335(1), 34–39 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. K.R. Reddy et al., Self-assembly and graft polymerization route to monodispersed Fe3O4@ SiO2—polyaniline core–shell composite nanoparticles: physical properties. J. Nanosci. Nanotechnol. 8(11), 5632–5639 (2008)

    Article  CAS  PubMed  Google Scholar 

  17. K.R. Reddy, K.P. Lee, A.I. Gopalan, Novel electrically conductive and ferromagnetic composites of poly (aniline-co-aminonaphthalenesulfonic acid) with iron oxide nanoparticles: synthesis and characterization. J. Appl. Polym. Sci. 106(2), 1181–1191 (2007)

    Article  CAS  Google Scholar 

  18. K.R. Reddy et al., A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles. Scripta Mater. 58(11), 1010–1013 (2008)

    Article  CAS  Google Scholar 

  19. C. Venkata Reddy et al., Synthesis and photoelectrochemical water oxidation of (Y, Cu) codoped α-Fe2O3 nanostructure photoanode. J. Alloy. Compd. 814, 152349 (2020)

    Article  CAS  Google Scholar 

  20. K. Kannan et al., Nanostructured metal oxides and its hybrids for photocatalytic and biomedical applications. Adv. Colloid Interface. Sci. 281, 102178 (2020)

    Article  CAS  PubMed  Google Scholar 

  21. K.R. Reddy, K.-P. Lee, A.I. Gopalan, Self-assembly directed synthesis of poly (ortho-toluidine)-metal (gold and palladium) composite nanospheres. J. Nanosci. Nanotechnol. 7(9), 3117–3125 (2007)

    Article  CAS  PubMed  Google Scholar 

  22. K. Raghava Reddy et al., Chapter 10 - Functionalized magnetic nanoparticles/biopolymer hybrids: synthesis methods, properties and biomedical applications, in Methods in microbiology. ed. by V. Gurtler, A.S. Ball, S. Soni (Academic Press, New York, 2019), pp. 227–254

    Google Scholar 

  23. M. Abd Elkodous et al., Fabrication of ultra-pure anisotropic zinc oxide nanoparticles via simple and cost-effective route: implications for UTI and EAC medications. Biol. Trace Elem. Res. 196(1), 297–317 (2019)

    Article  PubMed  Google Scholar 

  24. C.V. Reddy et al., Z-scheme binary 1D ZnWO4 nanorods decorated 2D NiFe2O4 nanoplates as photocatalysts for high efficiency photocatalytic degradation of toxic organic pollutants from wastewater. J. Environ. Manag. 268, 110677 (2020)

    Article  CAS  Google Scholar 

  25. M. Abd Elkodous, et al., Nanocomposite matrix conjugated with carbon nanomaterials for photocatalytic wastewater treatment. J. Hazard. Mater. 124657 (2020)

  26. M.I.A. Abdel Maksoud et al., Nanostructured Mg substituted Mn-Zn ferrites: a magnetic recyclable catalyst for outstanding photocatalytic and antimicrobial potentials. J. Hazard. Mater. 399, 123000 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. T. Tavangar et al., Textile waste, dyes/inorganic salts separation of cerium oxide-loaded loose nanofiltration polyethersulfone membranes. Chem. Eng. J. 385, 123787 (2020)

    Article  CAS  Google Scholar 

  28. E. Haque et al., Nanoarchitectured Graphene-Organic Frameworks (GOFs): synthetic strategies, properties, and applications. Chemistry 13(23), 3561–3574 (2018)

    CAS  Google Scholar 

  29. C.V. Reddy et al., Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes. Int. J. Hydrogen Energy 45(13), 7656–7679 (2020)

    Article  CAS  Google Scholar 

  30. C.V. Reddy et al., Mn-doped ZrO2 nanoparticles prepared by a template-free method for electrochemical energy storage and abatement of dye degradation. Ceram. Int. 45(12), 15298–15306 (2019)

    Article  CAS  Google Scholar 

  31. C.V. Reddy et al., Copper-doped ZrO2 nanoparticles as high-performance catalysts for efficient removal of toxic organic pollutants and stable solar water oxidation. J. Environ. Manag. 260, 110088 (2020)

    Article  CAS  Google Scholar 

  32. C.V. Reddy et al., Efficient removal of toxic organic dyes and photoelectrochemical properties of iron-doped zirconia nanoparticles. Chemosphere 239, 124766 (2020)

    Article  CAS  PubMed  Google Scholar 

  33. C.V. Reddy et al., Ni-dopant concentration effect of ZrO2 photocatalyst on photoelectrochemical water splitting and efficient removal of toxic organic pollutants. Sep. Purif. Technol. 252, 117352 (2020)

    Article  CAS  Google Scholar 

  34. S.P. Dharupaneedi et al., Membrane-based separation of potential emerging pollutants. Sep. Purif. Technol. 210, 850–866 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. P.S. Basavarajappa et al., Enhanced photocatalytic activity and biosensing of gadolinium substituted BiFeO3 nanoparticles. ChemistrySelect 3(31), 9025–9033 (2018)

    Article  CAS  Google Scholar 

  36. C.V. Reddy et al., Highly enhanced photoelectrocatalytic water oxidation using BiVO4 nanostructures Novel BiVO4 nanostructures for environmental remediation, enhanced photoelectrocatalytic water oxidation and electrochemical energy storage performance. Sol. Energy 207, 41–449 (2020)

    Google Scholar 

  37. K. Karthik et al., Barium titanate nanostructures for photocatalytic hydrogen generation and photodegradation of chemical pollutants. J. Mater. Sci. 30(23), 20646–20653 (2019)

    CAS  Google Scholar 

  38. R. Koutavarapu et al., ZnO nanosheets-decorated Bi2WO6 nanolayers as efficient photocatalysts for the removal of toxic environmental pollutants and photoelectrochemical solar water oxidation. J. Environ. Manag. 265, 110504 (2020)

    Article  CAS  Google Scholar 

  39. M. Srinivas et al., Novel Co and Ni metal nanostructures as efficient photocatalysts for photodegradation of organic dyes. Mater. Res. Express 6(12), 125502 (2019)

    Article  CAS  Google Scholar 

  40. S. Elbasuney et al., Facile synthesis of RGO-Fe2O3 nanocomposite: a novel catalyzing agent for composite propellants. J. Mater. Sci. 31(23), 20805–20815 (2020)

    CAS  Google Scholar 

  41. S. Elbasuney et al., Stabilized super-thermite colloids: a new generation of advanced highly energetic materials. Appl. Surf. Sci. 419, 328–336 (2017)

    Article  CAS  Google Scholar 

  42. S. Elbasuney et al., Super-thermite (Al/Fe2O3) Fluorocarbon nanocomposite with stimulated infrared thermal signature via extended primary combustion zones for effective countermeasures of infrared seekers. J. Inorg. Organomet. Polym Mater. 28(6), 2231–2240 (2018)

    Article  CAS  Google Scholar 

  43. Q.-L. Yan et al., Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions. Prog. Energy Combust. Sci. 57, 75–136 (2016)

    Article  Google Scholar 

  44. S. Vyazovkin et al., ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 520(1–2), 1–19 (2011)

    Article  CAS  Google Scholar 

  45. D. Trache et al., Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J. Therm. Anal. Calorim. 124(3), 1485–1496 (2016)

    Article  CAS  Google Scholar 

  46. T. Akahira, Trans. Joint convention of four electrical institutes. Res. Rep. Chiba Inst. Technol. 16, 22–31 (1971)

    Google Scholar 

  47. V.C. Karade et al., A green approach for the synthesis of α-Fe2O3 nanoparticles from Gardenia resinifera plant and it’s In vitro hyperthermia application. Heliyon 5(7), e02044 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. D.E. Fouad et al., Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor. Results Phys. 12, 1253–1261 (2019)

    Article  Google Scholar 

  49. M. Sharma, α-Fe2O3 preparation by sol-gel method, University of Delhi, Lab Manual (2017). https://www.bragitoff.com/wp-content/uploads/2017/09/fe2o3-xrd-compressed-ver-2.pdf

  50. T. Liang et al., Design of functionalized α-Fe2O3 (III) films with long-term anti-wetting properties. Ceram. Int. 46(5), 6129–6135 (2020)

    Article  CAS  Google Scholar 

  51. M. Tadic et al., Magnetic properties of hematite (α− Fe2O3) nanoparticles synthesized by sol-gel synthesis method: the influence of particle size and particle size distribution. J. Electr. Eng. 70(7), 71–76 (2019)

    Google Scholar 

  52. Q.Z. Zeng et al., Hydrothermal synthesis of monodisperse α-Fe2O3 hollow microspheroids and their high gas-sensing properties. J. Alloy. Compd. 705, 427–437 (2017)

    Article  CAS  Google Scholar 

  53. P. Belavi et al., Structural, electrical and magnetic properties of cadmium substituted nickel–copper ferrites. Mater. Chem. Phys. 132(1), 138–144 (2012)

    Article  CAS  Google Scholar 

  54. M.A. Maksoud et al., Synthesis and characterization of metals-substituted cobalt ferrite [Mx Co (1–x) Fe2O4;(M= Zn, Cu and Mn; x= 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mater. Sci. Eng. C 92, 644–656 (2018)

    Article  Google Scholar 

  55. A. Ashour et al., Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40, 141–151 (2018)

    Article  CAS  Google Scholar 

  56. M.A. Maksoud et al., Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications. J. Mater. Sci. 30(5), 4908–4919 (2019)

    CAS  Google Scholar 

  57. K. Pal, M.A. Elkodous, M.M. Mohan, CdS nanowires encapsulated liquid crystal in-plane switching of LCD device. J. Mater. Sci. 29(12), 10301–10310 (2018)

    CAS  Google Scholar 

  58. C. Mandilas et al., Synthesis of aluminium nanoparticles by arc plasma spray under atmospheric pressure. Mater. Sci. Eng. B 178(1), 22–30 (2013)

    Article  CAS  Google Scholar 

  59. M. Paskevicius et al., Mechanochemical synthesis of aluminium nanoparticles and their deuterium sorption properties to 2 kbar. J. Alloy. Compd. 481(1–2), 595–599 (2009)

    Article  CAS  Google Scholar 

  60. B. Alinejad, K. Mahmoodi, A novel method for generating hydrogen by hydrolysis of highly activated aluminum nanoparticles in pure water. Int. J. Hydrogen Energy 34(19), 7934–7938 (2009)

    Article  CAS  Google Scholar 

  61. A. Baraka et al., Synthesis of silver nanoparticles using natural pigments extracted from Alfalfa leaves and its use for antimicrobial activity. Chem. Pap. 71(11), 2271–2281 (2017)

    Article  CAS  Google Scholar 

  62. F.M. Mosallam et al., Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microb. Pathog. 122, 108–116 (2018)

    Article  CAS  PubMed  Google Scholar 

  63. J.J.-I. Yoh et al., Test-based thermal explosion model for HMX. Proc. Combust. Inst. 31(2), 2353–2359 (2007)

    Article  Google Scholar 

  64. C.M. Tarver, T.D. Tran, Thermal decomposition models for HMX-based plastic bonded explosives. Combust. Flame 137(1), 50–62 (2004)

    Article  CAS  Google Scholar 

  65. A.I. El-Batal et al., Nystatin-mediated bismuth oxide nano-drug synthesis using gamma rays for increasing the antimicrobial and antibiofilm activities against some pathogenic bacteria and Candida species. RSC Adv. 10(16), 9274–9289 (2020)

    Article  CAS  Google Scholar 

  66. H. Pouran et al., Assessment of ATR-FTIR spectroscopy with multivariate analysis to investigate the binding mechanisms of Ag and TiO2 nanoparticles to Chelex®-100 or MetsorbTM for the DGT technique. Anal. Methods 12(7), 959–969 (2020)

    Article  CAS  Google Scholar 

  67. T. Munir et al., Impact of silver dopant on structural and optical properties of TiO2 nanoparticles. Digest J. Nanomater. Biostruct. (DJNB) 14(2), 279–284 (2019)

    Google Scholar 

  68. G.S. El-Sayyad et al., Merits of photocatalytic and antimicrobial applications of gamma-irradiated Cox Ni1–x Fe2O4/SiO2/TiO2; x= 09 nanocomposite for pyridine removal and pathogenic bacteria/fungi disinfection: implication for wastewater treatment. RSC Adv. 10(9), 5241–5259 (2020)

    Article  CAS  Google Scholar 

  69. S. Zhang et al., Fabrication and characterization of surface modified HMX@ PANI core-shell composites with enhanced thermal properties and desensitization via in situ polymerization. Appl. Surf. Sci. 515, 146042 (2020)

    Article  CAS  Google Scholar 

  70. L. Zhao et al., Kinetic model of thermal decomposition of CL-20/HMX co-crystal for thermal safety prediction. Thermochim. Acta 674, 44–51 (2019)

    Article  CAS  Google Scholar 

  71. M.A. Bekhti et al., Enhanced tailored of thermal stability, optical and electrochemical properties of PANI matrix containing Al2O3 hybrid materials synthesized through in situ polymerization. Polym. Compos. 42(1), 6–14 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Nanotechnology Research Center, School of Chemical Engineering, Military Technical College, Egyptian Armed Forces, and Zeiss microscope team in Cairo for their invaluable advice during this study. Figures 2 and 13 had been created by Biorender.com.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sherif Elbasuney or Gharieb S. El-Sayyad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbasuney, S., Yehia, M., Hamed, A. et al. Synergistic Catalytic Effect of Thermite Nanoparticles on HMX Thermal Decomposition. J Inorg Organomet Polym 31, 2293–2305 (2021). https://doi.org/10.1007/s10904-021-01916-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01916-3

Keywords

Navigation