Skip to main content
Log in

The Impact of Metastable Intermolrecular Nanocomposite Particles on Kinetic Decomposition of Heterocyclic Nitramines Using Advanced Solid‐Phase Decomposition Models

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Surface oxygen of oxide catalyst has low coordination number; they are negatively charged. Surface oxygen can act active site for decomposition of energetic nitramines (i.e. HMX). Additionally hydrous catalyst surface can release active OH radicals. Colloidal oxide particles can fulfil these requirements. Furthermore oxide particles can induce thermite reaction with aluminium particles. This study reports on the facile fabrication of colloidal ferric oxide particles of 5 nm average particle size. Aluminium nanoplates of 100 nm particle size were dispersed in ferric oxide colloid. Colloidal Fe2O3/Al binary mixture was integrated into HMX matrix via co-precipitation technique. SEM micrographs demonstrated uniform dispersion of nanothermite particles into energetic matrix. Naonothermite particles experienced dramatic change in HMX thermal behaviour with increase in total heat release by 63% using DSC. The impact of thermite particles on HMX kinetic decomposition was evaluated via an integral isoconversional method using KAS, and Kissinger models. The mean value of apparent activation was reduced by 23.5 and 24.3% using Kissinger and KAS models respectively. This dramatic change in HMX decomposition could be ascribed to ferric oxide reactivity. Facile integration of colloidal thermite particles into HMX can secure high interfacial surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R. Meyer, J. Kohler, A. Homburg, eds. EXPLOSIVES. Sixth (ed.). 2007, WILEY: Weinheim

  2. H. Huang, Y. Shi, J. Yang, Thermal characterization of the promising energetic material TKX-50. J. Therm. Anal. Calorim. 121(2), 705–709 (2015)

    Article  CAS  Google Scholar 

  3. A.M.A. Elghafour et al., Highly energetic nitramines: A novel platonizing agent for double-base propellants with superior combustion characteristics. Fuel 227, 478–484 (2018)

    Article  CAS  Google Scholar 

  4. M. Talawar et al., New directions in the science and technology of advanced sheet explosive formulations and the key energetic materials used in the processing of sheet explosives: Emerging trends. J. Hazard. Mater. 300, 307–321 (2015)

    Article  CAS  Google Scholar 

  5. S. Elbasuney, G.S. El-Sayyad, The potentials of TiO2 nanocatalyst on HMX thermolysis. J. Mater. Sci.: Mater. Electron. 31(17), 14930–14940 (2020)

    CAS  Google Scholar 

  6. S. Elbasuney et al., Multi-component nanocomposite infrared flare with superior infrared signature via synergism of nanothermite and reduced graphene oxide. J. Mater. Sci.: Mater. Electron. 31(14), 11520–11526 (2020)

    CAS  Google Scholar 

  7. N. Fischer et al., Pushing the limits of energetic materials–the synthesis and characterization of dihydroxylammonium 5, 5′-bistetrazole-1, 1′-diolate. J. Mater. Chem. 22(38), 20418–20422 (2012)

    Article  CAS  Google Scholar 

  8. S. Elbasuney, M. Yehia, Ammonium Perchlorate Encapsulated with TiO2 Nanocomposite for Catalyzed Combustion Reactions. J. Inorg. Organomet. Polym Mater. 29(4), 1349–1357 (2019)

    Article  CAS  Google Scholar 

  9. S. Elbasuney, M. Yehia, Ferric Oxide Colloid: A Novel Nano-catalyst for Solid Propellants. J. Inorg. Organomet. Polym Mater. 30(3), 706–713 (2020)

    Article  CAS  Google Scholar 

  10. S. Elbasuney et al., Novel High Energy Density Material Based on Metastable Intermolecular Nanocomposite. J. Inorg. Organomet. Polym Mater. 30(10), 3980–3988 (2020)

    Article  CAS  Google Scholar 

  11. S. Elbasuney et al., Ferric oxide colloid: novel nanocatalyst for heterocyclic nitramines. Journal of Materials Science: Materials in Electronics, 2021

  12. S. Elbasuney et al., Facile synthesis of RGO-Fe2O3 nanocomposite: A novel catalyzing agent for composite propellants. J. Mater. Sci.: Mater. Electron. 31(23), 20805–20815 (2020)

    CAS  Google Scholar 

  13. S. Elbasuney, Dispersion characteristics of dry and colloidal nano-titania into epoxy resin. Powder Technol. 268(0), 158–164 (2014)

    Article  CAS  Google Scholar 

  14. S. Elbasuney, Continuous hydrothermal synthesis of AlO(OH) nanorods as a clean flame retardant agent. Particuology 22, 66–71 (2015)

    Article  CAS  Google Scholar 

  15. S. Elbasuney, Surface engineering of layered double hydroxide (LDH) nanoparticles for polymer flame retardancy. Powder Technol. 277, 63–73 (2015)

    Article  CAS  Google Scholar 

  16. A. Cabanas et al., A continuous and clean one-step synthesis of nano-particulate Ce1 – xZrxO2 solid solutions in near-critical water. Chemical Communications 11, 901–902 (2000)

    Article  Google Scholar 

  17. K. Byrappa, M. Yoshimura, Hydrothermal technology—Principles and applications. Handbook of hydrothermal technology, 2001:  1–52

  18. O. Schäf, H. Ghobarkar, P. Knauth, Hydrothermal synthesis of nanomaterials, in Nanostructured Materials. 2004, Springer. p. 23–41

  19. Y.X. Gan et al., Hydrothermal synthesis of nanomaterials. 2020, Hindawi

  20. A. Benhammada et al., Synthesis and characterization of α-Fe2O3 nanoparticles from different precursors and their catalytic effect on the thermal decomposition of nitrocellulose. Thermochim. Acta 686, 178570 (2020)

    Article  CAS  Google Scholar 

  21. A.F. Tarchoun et al., New insensitive nitrogen-rich energetic polymers based on amino-functionalized cellulose and microcrystalline cellulose: Synthesis and characterization. Fuel 277, 118258 (2020)

    Article  CAS  Google Scholar 

  22. S. Hanafi et al., Catalytic effect of 2D-layered energetic hybrid crystals on the thermal decomposition of 3-nitro-2,4-dihydro-3H-1,2,4-triazol-5-one (NTO). Thermochim. Acta 692, 178747 (2020)

    Article  CAS  Google Scholar 

  23. M.A. Khalilzadeh et al., Green Synthesis of Magnetic Nanocomposite with Iron Oxide Deposited on Cellulose Nanocrystals with Copper (Fe3O4@CNC/Cu): Investigation of Catalytic Activity for the Development of a Venlafaxine Electrochemical Sensor. Industrial & Engineering Chemistry Research, 2020. 59(10): 4219–4228

  24. S. Elbasuney et al., Novel nanocomposite decoy flare based on super-thermite and graphite particles. J. Mater. Sci.: Mater. Electron. 31(8), 6130–6139 (2020)

    CAS  Google Scholar 

  25. S. Elbasuney et al., Reduced graphene oxide: a novel black body emitter for advanced infrared decoy flares. Journal of Energetic Materials, 2020: p. 1–13

  26. S. Elbasuney et al., Infrared Signature of Novel Super-Thermite (Fe2O3/Mg) Fluorocarbon Nanocomposite for Effective Countermeasures of Infrared Seekers. J. Inorg. Organomet. Polym Mater. 28(5), 1718–1727 (2018)

    Article  CAS  Google Scholar 

  27. S. Elbasuney et al., Infrared Spectra of Customized Magnesium/Teflon/Viton Decoy Flares. Combustion, Explosion, and Shock Waves 55(5), 1 (2019)

    Article  Google Scholar 

  28. S. Elbasuney et al., Super-Thermite (Al/Fe2O3) Fluorocarbon Nanocomposite with Stimulated Infrared Thermal Signature via Extended Primary Combustion Zones for Effective Countermeasures of Infrared Seekers. Journal of Inorganic and Organometallic Polymers and Materials, 2018. 28

  29. D. Trache, Comments on “thermal degradation behavior of hypochlorite-oxidized starch nanocrystals under different oxidized levels”. Carbohyd. Polym. 151, 535–537 (2016)

    Article  CAS  Google Scholar 

  30. A.F. Tarchoun et al., (2019) A Promising Energetic Polymer from Posidonia oceanica Brown Algae Synthesis, Characterization, and Kinetic Modeling Macromolecular. Chemistry Physics  2019: 220(22)

  31. S. Elbasuney et al., Novel (MnO2/Al) thermite colloid: an opportunity for energetic systems with enhanced performance. J. Mater. Sci.: Mater. Electron. 31(23), 21399–21407 (2020)

    CAS  Google Scholar 

  32. M. Starink, The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim. Acta 404(1–2), 163–176 (2003)

    Article  CAS  Google Scholar 

  33. H.E. Kissinger, Reaction kinetics in differential thermal analysis. Analytical chemistry 29(11), 1702–1706 (1957)

    Article  CAS  Google Scholar 

  34. S. Elbasuney, Sustainable steric stabilization of colloidal titania nanoparticles. Appl. Surf. Sci. 409, 438–447 (2017)

    Article  CAS  Google Scholar 

  35. S. Vyazovkin, C. Wight, Kinetics in solids. Annu. Rev. Phys. Chem. 48(1), 125–149 (1997)

    Article  CAS  Google Scholar 

  36. Q.-L. Yan et al., Thermal behavior and decomposition kinetics of Formex-bonded explosives containing different cyclic nitramines. J. Therm. Anal. Calorim. 111(2), 1419–1430 (2013)

    Article  CAS  Google Scholar 

  37. Q.-L. Yan et al., The influence of the semtex matrix on the thermal behavior and decomposition kinetics of cyclic nitramines. Cent. Eur. J. Energ. Mater. 10(4), 509–528 (2013)

    CAS  Google Scholar 

  38. N.N. Thadhani, Thermal analysis instrumentation for kinetics of shocked materials. 2003, Georgia Institute of Technology

  39. V.E. ZARKO, A.A. GROMOV (eds.), ENERGETIC NANOMATERIALS Synthesis, Characterization, and Application (Elsevier, Amsterdam, 2016)

    Google Scholar 

  40. C.M. Tarver, T.D. Tran, Thermal decomposition models for HMX-based plastic bonded explosives. Combust. Flame 137(1–2), 50–62 (2004)

    Article  CAS  Google Scholar 

  41. V.E. Zarko, A.A. Gromov, Energetic nanomaterials: Synthesis, characterization, and application. 2016: elsevier

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif Elbasuney.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbasuney, S., Hamed, A., Yehia, M. et al. The Impact of Metastable Intermolrecular Nanocomposite Particles on Kinetic Decomposition of Heterocyclic Nitramines Using Advanced Solid‐Phase Decomposition Models. J Inorg Organomet Polym 31, 3665–3676 (2021). https://doi.org/10.1007/s10904-021-02007-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02007-z

Keywords

Navigation