Skip to main content

Advertisement

Log in

Fabrication of Ultra-Pure Anisotropic Zinc Oxide Nanoparticles via Simple and Cost-Effective Route: Implications for UTI and EAC Medications

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The purposes of this work are to evaluate the antimicrobial, antibiofilm, anticancer, and antioxidant abilities of anisotropic zinc oxide nanoparticles (ZnO NPs) synthesized by a cost-effective and eco-friendly sol–gel method. The synthesized ZnO NPs were entirely characterized by UV-Vis, XRD, FTIR, HRTEM, zeta potential, SEM mapping, BET surface analyzer, and EDX elemental analysis. Antimicrobial and antibiofilm activities of ZnO NPs were investigated against multidrug-resistant (MDR) bacteria and yeast causing serious diseases like urinary tract infection (UTI). The anticancer activity was performed against Ehrlich ascites carcinoma (EAC). Additionally, antioxidant scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) was observed. The synthesized ZnO NPs exhibited an absorption peak at 385.0 nm characteristic to the surface plasmon resonance (SPR). Data obtained from HRTEM, SEM, and XRD confirmed the anisotropic crystalline nature of the prepared ZnO NPs with an average particle size of 68.2 nm. The calculated surface area of the prepared ZnO NPs was 10.62 m2/g and the porosity was 13.16%, while pore volume was calculated to be 0.013 cm3/g and the average pore size was about 3.10 nm. The prepared ZnO NPs showed promising antimicrobial activity against all tested UTI-causing pathogens. It showed a prominent antimicrobial capability against Candida tropicalis with a zone of inhibition (ZOI) reaching 22.4 mm, 13 mm ZOI for Bacillus subtilis, and 12.5 mm ZOI for Pseudomonas aeruginosa. Additionally, the prepared ZnO NPs showed enhanced biofilm repression of about 79.33%, 72.94%, and 33.68% against B. subtilis, C. tropicalis, and P. aeruginosa, respectively. Moreover, the prepared ZnO NPs had a powerful antioxidant property with 33.0% scavenging ability after applied DPPH assay. Surprisingly, upon ZnO NPs treatment, cancer cell viability reduced from 100 to 58.5% after only 24 h due to their unique antitumor activity. Therefore, according to these outstanding properties, this study could give insights for solving serious industrial, pharmaceutical, and medical challenges, particularly in the EAC and UTI medications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 7:2767

    CAS  PubMed  PubMed Central  Google Scholar 

  2. El-Batal A et al (2014) Synthesis of silver nanoparticles and incorporation with certain antibiotic using gamma irradiation. Br J Pharm Res 4(11):1341–1363

  3. Maksoud MA et al (2018) Synthesis and characterization of metals-substituted cobalt ferrite [Mx Co (1-x) Fe2O4; (M= Zn, Cu and Mn; x= 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for anagrelide determination in biological samples. Mater Sci Eng C 92:644–656

    Article  CAS  Google Scholar 

  4. El-Baz AF et al (2016) Extracellular biosynthesis of anti-Candida silver nanoparticles using Monascus purpureus. J Basic Microbiol 56(5):531–540

    Article  CAS  PubMed  Google Scholar 

  5. Maksoud MA et al (2019) Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microb Pathog 127:144–158

    Article  CAS  PubMed  Google Scholar 

  6. Ishida H, Ishida Y, Kurosaka Y, Otani T, Sato K, Kobayashi H (1998) In vitro and in vivo activities of levofloxacin against biofilm-producing Pseudomonas aeruginosa. Antimicrob Agents Chemother 42(7):1641–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Branski LK, al-Mousawi A, Rivero H, Jeschke MG, Sanford AP, Herndon DN (2009) Emerging infections in burns. Surg Infect 10(5):389–397

    Article  Google Scholar 

  8. Diec J, Carnt N, Tilia D, Evans V, Rao V, Ozkan J, Holden BA (2009) Prompt diagnosis and treatment of microbial keratitis in a daily wear lens. Optom Vis Sci 86(7):E904–E907

    Article  PubMed  Google Scholar 

  9. Pal K, Sajjadifar S, Abd Elkodous M, Alli YA, Gomes F, Jeevanandam J, Thomas S, Sigov A (2019) Soft, self-assembly liquid crystalline nanocomposite for superior switching. Electron Mater Lett 15(1):84–101

    Article  CAS  Google Scholar 

  10. Thirugnanasambandan T, Pal K, A. S, Elkodous MA, Prasath H, Kulasekarapandian K, Ayeshamariam A, Jeevanandam J (2018) Aggrandize efficiency of ultra-thin silicon solar cell via topical clustering of silver nanoparticles. Nano-Struc & Nano-Obj 16:224–233

  11. Sajjadifar, S et al 2019 Characterization of catalyst: comparison of BrØnsted and Lewis acidic power in boron sulfonic acid as a heterogeneous catalyst in green synthesis of quinoxaline derivatives. Chemical Methodologies. 3(2. pp. 145–275): p. 226–236

  12. Pal K, Mohan MLNM, Zhan B, Wang G (2015) Design, synthesis and application of hydrogen bonded smectic liquid crystal matrix encapsulated ZnO nanospikes. J Mater Chem C 3(45):11907–11917

    Article  CAS  Google Scholar 

  13. Elkodous MA et al (2019) Layer-by-layer preparation and characterization of recyclable nanocomposite (CoxNi1−xFe2O4; X = 0.9/SiO2/TiO2). J Mater Sci Mater Electron 30(9):8312–8328

    Article  CAS  Google Scholar 

  14. Elkodous, MA et al 2018 C-dots dispersed macro-mesoporous TiO2phtocatalyst for effective waste water treatment. Charac and Appli.of Nanomater 1(2)

  15. Maksoud MIAA et al (2019) Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications. J Mater Sci Mater Electron 30(5):4908–4919

    Article  CAS  Google Scholar 

  16. El-Batal AI et al (2017) Response surface methodology optimization of melanin production by Streptomyces cyaneus and synthesis of copper oxide nanoparticles using gamma radiation. J Clust Sci 28(3):1083–1112

    Article  CAS  Google Scholar 

  17. Abd Elkodous M, el-Sayyad GS, Abdelrahman IY, el-Bastawisy HS, Mohamed AE, Mosallam FM, Nasser HA, Gobara M, Baraka A, Elsayed MA, el-Batal AI (2019) Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf B: Biointerfaces 180:411–428

    Article  CAS  PubMed  Google Scholar 

  18. Abd Elkodous M, el-Sayyad GS, Nasser HA, Elshamy AA, Morsi M, Abdelrahman IY, Kodous AS, Mosallam FM, Gobara M, el-Batal AI (2019) Engineered nanomaterials as potential candidates for HIV treatment: between opportunities and challenges. J Clust Sci 30(3):531–540

    Article  CAS  Google Scholar 

  19. Some S, Kumar Sen I, Mandal A, Aslan T, Ustun Y, Yilmaz EŞ, Katı A, Demirbas A, Mandal AK, Ocsoy I (2018) Biosynthesis of silver nanoparticles and their versatile antimicrobial properties. Mater Res Exp 6(1):012001

  20. Rajeshkumar, S 2019 Antifungal impact of nanoparticles against different plant pathogenic fungi, in nanomaterials in plants, algae and microorganisms. Elsevier. p. 197–217

  21. Shkhair AI et al (2018) Chemical synthesis and characterization of silver nanoparticles induced biocompatibility for anticancer activity. EXECUTIVE EDITOR 9(11):352

    Google Scholar 

  22. Jeevanandam, J, K Pal, and MK Danquah Virus-like nanoparticles as a novel delivery tool in gene therapy. Biochimie, 2018

  23. Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146

    Article  CAS  PubMed  Google Scholar 

  24. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Article  CAS  PubMed  Google Scholar 

  25. Xu C, Qu X (2014) Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater 6(3):e90

    Article  CAS  Google Scholar 

  26. Ling D, Hyeon T (2013) Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small 9(9–10):1450–1466

    Article  CAS  PubMed  Google Scholar 

  27. Rasmussen JW, Martinez E, Louka P, Wingett DG (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 7(9):1063–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ravishankar Rai, V and A Jamuna Bai 2011 Nanoparticles and their potential application as antimicrobials. A Méndez-Vilas A, editor. Mysore: Formatex

  29. Ghorab M, el-Batal A, Hanora A, Mosalam F (2016) Incorporation of silver nanoparticles with natural polymers using biotechnological and gamma irradiation processes. Br Biotech J 16(1):1–25

  30. Pal K, Zhan B, Madhu Mohan MLN, Schirhagl R, Wang G (2015) Influence of ZnO nanostructures in liquid crystal interfaces for bistable switching applications. Appl Surf Sci 357:1499–1510

    Article  CAS  Google Scholar 

  31. Ponnuvelu DV, Selvaraj A, Suriyaraj SP, Selvakumar R, Pulithadathail B (2016) Ultrathin hexagonal MgO nanoflakes coated medical textiles and their enhanced antibacterial activity. Mater Res Exp 3(10):105005

  32. El-Sayyad, GS et al. Facile biosynthesis of tellurium dioxide nanoparticles by streptomyces cyaneus melanin pigment and gamma radiation for repressing some aspergillus pathogens and bacterial wound cultures. Journal of Cluster Science, (2019, In Press), https://doi.org/10.1007/s10876-019-01629-1

  33. El-Batal, AI et al Penicillium chrysogenum-mediated mycogenic synthesis of copper oxide nanoparticles using gamma rays for in vitro antimicrobial activity against some plant pathogens. Journal of Cluster Science, (2019, In Press), https://doi.org/10.1007/s10876-019-01619-3

  34. Espitia PJP, Soares NFF, Coimbra JSR, de Andrade NJ, Cruz RS, Medeiros EAA (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5(5):1447–1464

    Article  CAS  Google Scholar 

  35. Popescu, M et al UV protection of ultra-thin ZnO film on viscose. In Advanced topics in optoelectronics, microelectronics, and nanotechnologies IX. 2019. Int Soc for Opt and Photo

  36. Huang MH et al (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292(5523):1897–1899

    Article  CAS  PubMed  Google Scholar 

  37. Vayssieres L, Keis K, Lindquist SE, Hagfeldt A (2001) Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. J Phys Chem B 105(17):3350–3352

    Article  CAS  Google Scholar 

  38. Choi JH, Tabata H, Kawai T (2001) Initial preferred growth in zinc oxide thin films on Si and amorphous substrates by a pulsed laser deposition. J Cryst Growth 226(4):493–500

    Article  CAS  Google Scholar 

  39. Liu C et al (2003) High-density, ordered ultraviolet light-emitting ZnO nanowire arrays. Adv Mater 15(10):838–841

    Article  CAS  Google Scholar 

  40. Lyu SC, Zhang Y, Ruh H, Lee HJ, Shim HW, Suh EK, Lee CJ (2002) Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires. Chem Phys Lett 363(1–2):134–138

    Article  CAS  Google Scholar 

  41. Yao B, Chan Y, Wang N (2002) Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl Phys Lett 81(4):757–759

    Article  CAS  Google Scholar 

  42. Kim S-W, Fujita S, Fujita S (2002) Self-organized ZnO quantum dots on SiO 2/Si substrates by metal organic chemical vapor deposition. Appl Phys Lett 81(26):5036–5038

    Article  CAS  Google Scholar 

  43. Ashour A et al (2018) Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40:141–151

    Article  CAS  Google Scholar 

  44. El-Batal AI et al (2018) Antimicrobial, antioxidant and anticancer activities of zinc nanoparticles prepared by natural polysaccharides and gamma radiation. Int J Biol Macromol 107:2298–2311

    Article  CAS  PubMed  Google Scholar 

  45. Saravanan M, Gopinath V, Chaurasia MK, Syed A, Ameen F, Purushothaman N (2018) Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytofriendly properties. Microb Pathog 115:57–63

    Article  CAS  PubMed  Google Scholar 

  46. Gavrilenko EA, Goncharova DA, Lapin IN, Nemoykina AL, Svetlichnyi VA, Aljulaih AA, Mintcheva N, Kulinich SA (2019) Comparative study of physicochemical and antibacterial properties of ZnO nanoparticles prepared by laser ablation of Zn target in water and air. Materials 12(1):186

    Article  CAS  PubMed Central  Google Scholar 

  47. Klencsár Z, Ábrahám A, Szabó L, Szabó EG, Stichleutner S, Kuzmann E, Homonnay Z, Tolnai G (2019) The effect of preparation conditions on magnetite nanoparticles obtained via chemical co-precipitation. Mater Chem Phys 223:122–132

    Article  CAS  Google Scholar 

  48. Nosrati H, Salehiabar M, Manjili HK, Danafar H, Davaran S (2018) Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applications. Int J Biol Macromol 108:909–915

    Article  CAS  PubMed  Google Scholar 

  49. Khan MF, Ansari AH, Hameedullah M, Ahmad E, Husain FM, Zia Q, Baig U, Zaheer MR, Alam MM, Khan AM, AlOthman ZA, Ahmad I, Ashraf GM, Aliev G (2016) Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: potential role as nano-antibiotics. Sci Rep 6:27689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hasnidawani J et al (2016) Synthesis of ZnO nanostructures using sol-gel method. Procedia Chem 19:211–216

  51. Chung YT, Ba-Abbad MM, Mohammad AW, Hairom NHH, Benamor A (2015) Synthesis of minimal-size ZnO nanoparticles through sol–gel method: Taguchi design optimisation. Mater Des 87:780–787

    Article  CAS  Google Scholar 

  52. Peña-Garcia R, Guerra Y, Farias BVM, Buitrago DM, Franco A Jr, Padrón-Hernández E (2018) Effects of temperature and atomic disorder on the magnetic phase transitions in ZnO nanoparticles obtained by sol–gel method. Mater Lett 233:146–148

    Article  CAS  Google Scholar 

  53. Abdel Maksoud MIA, el-ghandour A, el-Sayyad GS, Awed AS, Ashour AH, el-Batal AI, Gobara M, Abdel-Khalek EK, el-Okr MM (2019) Incorporation of Mn2+ into cobalt ferrite via sol–gel method: insights on induced changes in the structural, thermal, dielectric, and magnetic properties. J Sol-Gel Sci Technol 90(3):631–642

    Article  CAS  Google Scholar 

  54. El-Batal AI et al (2019) Potential nematicidal properties of silver boron nanoparticles: synthesis, characterization, in vitro and in vivo root-knot nematode (Meloidogyne incognita) treatments. J Clust Sci 30(3):687–705

    Article  CAS  Google Scholar 

  55. Humbe AV, Nawle AC, Shinde AB, Jadhav KM (2017) Impact of Jahn Teller ion on magnetic and semiconducting behaviour of Ni-Zn spinel ferrite synthesized by nitrate-citrate route. J Alloys Compd 691:343–354

    Article  CAS  Google Scholar 

  56. Gul I et al (2007) Structural, magnetic and electrical properties of Co1− xZnxFe2O4 synthesized by co-precipitation method. J Magn Magn Mater 311(2):494–499

    Article  CAS  Google Scholar 

  57. El-Batal AI et al (2017) Melanin-gamma rays assistants for bismuth oxide nanoparticles synthesis at room temperature for enhancing antimicrobial, and photocatalytic activity. J Photochem Photobiol B Biol 173:120–139

    Article  CAS  Google Scholar 

  58. Attia MS, el-Sayyad GS, Saleh SS, Balabel NM, el-Batal AI (2019) Spirulina platensis-polysaccharides promoted green silver nanoparticles production using gamma radiation to suppress the expansion of pear fire blight-producing Erwinia amylovora. J Clust Sci 30(4):919–935

    Article  CAS  Google Scholar 

  59. Tauc, J., R. Grigorovici, and A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys Status Solidi (b), 1966. 15(2): p. 627–637

  60. Reheem AA, Maksoud MA, Ashour A (2016) Surface modification and metallization of polycarbonate using low energy ion beam. Radiat Phys Chem 125:171–175

    Article  CAS  Google Scholar 

  61. Baraka A, Dickson S, Gobara M, el-Sayyad GS, Zorainy M, Awaad MI, Hatem H, Kotb MM, Tawfic AF (2017) Synthesis of silver nanoparticles using natural pigments extracted from alfalfa leaves and its use for antimicrobial activity. Chem Pap 71(11):2271–2281

    Article  CAS  Google Scholar 

  62. Gao Z, Cui F, Zeng S, Guo L, Shi J (2010) A high surface area superparamagnetic mesoporous spinel ferrite synthesized by a template-free approach and its adsorptive property. Microporous Mesoporous Mater 132(1–2):188–195

    Article  CAS  Google Scholar 

  63. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm analy 6(2):71–79

  64. Funke G et al (1998) Evaluation of the VITEK 2 system for rapid identification of medically relevant gram-negative rods. J Clin Microbiol 36(7):1948–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Diogo HC, Melhem M, Sarpieri A, Pires MC (2010) Evaluation of the disk-diffusion method to determine the in vitro efficacy of terbinafine against subcutaneous and superficial mycoses agents. An Bras Dermatol 85(3):324–330

    Article  PubMed  Google Scholar 

  66. El-Sayyad GS, Mosallam FM, El-Batal AI (2018) One-pot green synthesis of magnesium oxide nanoparticles using Penicillium chrysogenum melanin pigment and gamma rays with antimicrobial activity against multidrug-resistant microbes. Adv Powder Technol 29(11):2616–2625

    Article  CAS  Google Scholar 

  67. El-Batal AI et al (2019) Antibiofilm and antimicrobial activities of silver boron nanoparticles synthesized by PVP polymer and gamma rays against urinary tract pathogens. J Clust Sci 30(4):947–964

    Article  CAS  Google Scholar 

  68. El-Batal AI, Mosallam FM, El-Sayyad GS (2018) Synthesis of metallic silver nanoparticles by fluconazole drug and gamma rays to inhibit the growth of multidrug-resistant microbes. J Clust Sci 29(6):1003–1015

    Article  CAS  Google Scholar 

  69. Christensen GD et al (1982) Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun 37(1):318–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ansari MA, Khan HM, Khan AA, Cameotra SS, Pal R (2014) Antibiofilm efficacy of silver nanoparticles against biofilm of extended spectrum β-lactamase isolates of Escherichia coli and Klebsiella pneumoniae. Appl Nanosci 4(7):859–868

    Article  CAS  Google Scholar 

  71. Abidi SH, Sherwani SK, Siddiqui TR, Bashir A, Kazmi SU (2013) Drug resistance profile and biofilm forming potential of Pseudomonas aeruginosa isolated from contact lenses in Karachi-Pakistan. BMC Ophthalmol 13(1):57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mathur T, Singhal S, Khan S, Upadhyay DJ, Fatma T, Rattan A (2006) Detection of biofilm formation among the clinical isolates of staphylococci: an evaluation of three different screening methods. Indian J Med Microbiol 24(1):25

    Article  CAS  PubMed  Google Scholar 

  73. Priyadarshini S et al (2019) Biosynthesis of TiO 2 nanoparticles and their superior antibacterial effect against human nosocomial bacterial pathogens. Res Chem Intermed:1–13

  74. Pramod S et al (2017) A study to evaluate the in-vivo anticancer activity of ethanolic extract of Holoptelea integrifolia leaves against Ehrlich ascites carcinoma model using Swiss albino mice. Int J Basic Clin Pharmacol 5(5):1739–1745

  75. Absher, M 1973 Hemocytometer counting, in Tissue culture, Elsevier. p. 395–397

  76. Shimada K, Fujikawa K, Yahara K, Nakamura T (1992) Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 40(6):945–948

    Article  CAS  Google Scholar 

  77. Brownlee, K 1952 Probit analysis: a statistical Treatment of the sigmoid response curve. JSTOR

  78. Bigdeli F, Morsali A (2010) Synthesis ZnO nanoparticles from a new zinc (II) coordination polymer precursor. Mater Lett 64(1):4–5

    Article  CAS  Google Scholar 

  79. Kodous, MHA et al 2018 C-dots dispersed macro-mesoporous TiO2 phtocatalyst for effective waste water treatment. Charac and Appli.of Nanomater 1(2)

  80. Djaja NF, Montja DA, Saleh R (2013) The effect of Co incorporation into ZnO nanoparticles. Adv in Mate Phys and Chem 3(01):33–41

  81. Alwan RM et al (2015) Synthesis of zinc oxide nanoparticles via sol–gel route and their characterization. Nanosci Nanotechnol 5(1):1–6

    CAS  Google Scholar 

  82. Rana SB, Bhardwaj VK, Singh S, Singh A, Kaur N (2014) Influence of surface modification by 2-aminothiophenol on optoelectronics properties of ZnO nanoparticles. J Exp Nanosci 9(9):877–891

    Article  CAS  Google Scholar 

  83. Liufu S-C, Xiao H-N, Li Y-P (2005) Thermal analysis and degradation mechanism of polyacrylate/ZnO nanocomposites. Polym Degrad Stab 87(1):103–110

    Article  CAS  Google Scholar 

  84. Kwon, YJ, KH Kim, and CS Lim 2002 Characterizationof ZnO nanopwders synthesized by thepolymerized complex method via an organochemical route

  85. Pal K, Elkodous MA, Mohan MM (2018) CdS nanowires encapsulated liquid crystal in-plane switching of LCD device. J Mater Sci Mater Electron 29(12):10301–10310

    Article  CAS  Google Scholar 

  86. Jin Y et al (2000) Single-layer organic light-emitting diode with 2.0% external quantum efficiency prepared by spin-coating. Chem Phys Lett 320(5–6):387–392

    Article  CAS  Google Scholar 

  87. Debanath M, Karmakar S (2013) Study of blueshift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method. Mater Lett 111:116–119

    Article  CAS  Google Scholar 

  88. Clogston, JD and AK Patri 2011 Zeta potential measurement, in Characterization of nanoparticles intended for drug delivery. Springer. p. 63–70

  89. Arulprakasajothi M et al (2018) Performance study of conical strip inserts in tube heat exchanger using water based titanium oxide nanofluid. Therm Sci 22(00):250

    Google Scholar 

  90. Mahajan A, Ramana EV (2014) Patents on magnetoelectric multiferroics and their processing by electrophoretic deposition. Rec Pat on Mate Sci 7(2):109–130

  91. Kim K-M et al (2014) Physicochemical properties of surface charge-modified ZnO nanoparticles with different particle sizes. Int J Nanomedicine 9(Suppl 2):41

    PubMed  PubMed Central  Google Scholar 

  92. Sun, N.-x., et al., Interaction of starch and casein. Food Hydrocoll, 2016. 60: p. 572–579

  93. Morkoç, H and Ü Özgür 2009 General properties of ZnO. Zinc oxide. Wiley-VCH Verlag GmbH & Co. KGaA Weinheim

  94. Moezzi A, McDonagh AM, Cortie MB (2012) Zinc oxide particles: synthesis, properties and applications. Chem Eng J 185:1–22

    Article  CAS  Google Scholar 

  95. Mohan AC, Renjanadevi B (2016) Preparation of zinc oxide nanoparticles and its characterization using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Procedia Tech 24:761–766

  96. AlOthman ZA (2012) A review: fundamental aspects of silicate mesoporous materials. Materials 5(12):2874–2902

    Article  CAS  PubMed Central  Google Scholar 

  97. Bari, A et al 2009 Effect of solvents on the particle morphology of nanostructured ZnO

  98. Geetha M, Nagabhushana H, Shivananjaiah H (2016) Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia Jatropa latex as reducing agent. Journal of Science: Advanced Materials and Devices 1(3):301–310

  99. Tang Z-X, Lv B-F (2014) MgO nanoparticles as antibacterial agent: preparation and activity. Braz J Chem Eng 31(3):591–601

    Article  Google Scholar 

  100. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ashajyothi C, Harish KH, Dubey N, Chandrakanth RK (2016) Antibiofilm activity of biogenic copper and zinc oxide nanoparticles-antimicrobials collegiate against multiple drug resistant bacteria: a nanoscale approach. J of Nanostruc in Chem 6(4):329–341

  102. Park H-J, Kim HY, Cha S, Ahn CH, Roh J, Park S, Kim S, Choi K, Yi J, Kim Y, Yoon J (2013) Removal characteristics of engineered nanoparticles by activated sludge. Chemosphere 92(5):524–528

    Article  CAS  PubMed  Google Scholar 

  103. El-Batal A et al (2013) Gamma irradiation induces silver nanoparticles synthesis by Monascus purpureus. J Chem Pharm Res 5(8):1–15

    Google Scholar 

  104. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18(17):6679–6686

    Article  CAS  Google Scholar 

  105. Hackenberg S, Scherzed A, Technau A, Kessler M, Froelich K, Ginzkey C, Koehler C, Burghartz M, Hagen R, Kleinsasser N (2011) Cytotoxic, genotoxic and pro-inflammatory effects of zinc oxide nanoparticles in human nasal mucosa cells in vitro. Toxicol in Vitro 25(3):657–663

    Article  CAS  PubMed  Google Scholar 

  106. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shen C et al (2013) Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells. Toxicol Sci 136(1):120–130

    Article  CAS  PubMed  Google Scholar 

  108. Selvakumari D et al (2015) Anti cancer activity of ZnO nanoparticles on MCF7 (breast cancer cell) and A549 (lung cancer cell). Asi Res Publi Netwo J.l of Eng and Appli Sci 10:5418–5421

  109. Bai D-P, Zhang XF, Zhang GL, Huang YF, Gurunathan S (2017) Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells. Int J Nanomedicine 12:6521–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sharma A, Gorey B, Casey A (2018) In vitro comparative cytotoxicity study of aminated polystyrene, zinc oxide and silver nanoparticles on a cervical cancer cell line. Drug Chem Toxicol:1–15

  111. El-Batal A, Abd-Algawad MH, Abdelbaky N (2012) Enhancement of some natural antioxidants activity via microbial bioconversion process using gamma irradiation and incorporation into gold nanoparticles. World Appl Sci J 19(1):1–11

    CAS  Google Scholar 

  112. Mosallam FM, el-Sayyad GS, Fathy RM, el-Batal AI (2018) Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microb Pathog 122:108–116

    Article  CAS  PubMed  Google Scholar 

  113. El-Batal AI et al (2018) Biogenic synthesis of copper nanoparticles by natural polysaccharides and Pleurotus ostreatus fermented fenugreek using gamma rays with antioxidant and antimicrobial potential towards some wound pathogens. Microb Pathog 118:159–169

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the P.I. of Nanotechnology Research Unit (Prof. Dr. Ahmed I. El-Batal) for financing and supporting this study under the project “Nutraceuticals and Functional Foods Production by Using Nano/Biotechnological and Irradiation Processes.” Also, the authors would like to thank the director of research, Nile University, Giza, Egypt, and other researchers of the Zeiss microscope team at Cairo, Egypt, for their invaluable support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gharieb S. El-Sayyad.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Statement

This study does not contain any research with humans or animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd Elkodous, M., El-Sayyad, G.S., Abdel Maksoud, M.I.A. et al. Fabrication of Ultra-Pure Anisotropic Zinc Oxide Nanoparticles via Simple and Cost-Effective Route: Implications for UTI and EAC Medications. Biol Trace Elem Res 196, 297–317 (2020). https://doi.org/10.1007/s12011-019-01894-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01894-1

Keywords

Navigation