Aragón W, Reina-Pinto JJ, Serrano M (2017) The intimate talk between plants and microorganisms at the leaf surface. J Exp Bot 68:5339–5350
Article
Google Scholar
Bauer S, Schulte E, Thier HP (2005) Composition of the surface waxes from bell pepper and eggplant. Eur Food Res Technol 220:5–10
CAS
Article
Google Scholar
Bessire M, Chassot C, Jacquat AC, Humphry M, Borel S, Petétot JMDC, Métraux JP, Nawrath C (2007) A permeable cuticle in Arabidopsis leads to a strong resistance to Botrytis cinerea. EMBO J 26:2158–2168
CAS
Article
Google Scholar
Braccini CL, Vega AS, Coll Aráoz MV, Teal PE, Cerrillo T, Zavala JA, Fernandez PC (2015) Both volatiles and cuticular plant compounds determine oviposition of the willow sawfly Nematus oligospilus on leaves of Salix spp. (Salicaceae). J Chem Ecol 41:985–996
CAS
Article
Google Scholar
Busta L, Hegebarth D, Kroc E, Jetter R (2017) Changes in cuticular wax coverage and composition on developing Arabidopsis leaves are influenced by wax biosynthesis gene expression levels and trichome density. Planta 245:297–311
CAS
Article
Google Scholar
Damon SJ, Groves RL, Havey MJ (2014) Variation for epicuticular waxes on onion foliage and impacts on numbers of onion thrips. J Am Soc Hortic Sci 139:495–501
CAS
Article
Google Scholar
de Rijke E, Fellner C, Westerveld J, Lopatka M, Cerli C, Kalbitz K, de Koster CG (2015) Determination of n-alkanes in C. annuum (bell pepper) fruit and seed using GC-MS: comparison of extraction methods and application to samples of different geographical origin. Anal Bioana Cchem 407:5729–5738
Article
Google Scholar
Eigenbrode SD, Espelie KE (1995) Effects of plant epicuticular lipids on insect herbivores. Annu Rev Ecol Evol Syst 40:171–194
Google Scholar
Eigenbrode SD, Pillai SK (1998) Neonate Plutella xylostella responses to surface wax components of a resistant cabbage (Brassica oleracea). J Chem Ecol 24:1611–1627
CAS
Article
Google Scholar
Fernandez-Moreno JP, Malitsky S, Lashbrooke J, Biswal AK, Racovita RC, Mellerowicz EJ, Jetter R, Orzaez D, Aharoni A, Granell A (2016) An efficient method for medium throughput screening of cuticular wax composition in different plant species. Metabolomics 12:1–13
CAS
Article
Google Scholar
Gołebiowski M, Maliński E, Nawrot J, Szafranek J, Stepnowski P (2007) Identification of the cuticular lipid composition of the western flower thrips Frankliniella occidentalis. Comp Biochem Physio B Biochem Mol Biol 147:288–292
Article
Google Scholar
Haslam TM, Kunst L (2013) Wax analysis of stem and rosette leaves in Arabidopsis thaliana. Bio-protocol 3(11):e782. https://doi.org/10.21769/BioProtoc.782
Jenks MA, Tuttle HA, Eigenbrode SD, Feldmann KA (1995) Leaf epicuticular waxes of the Eceriferum mutants in Arabidopsis. Plant Physiol 108:369–377
CAS
Article
Google Scholar
Khakimov B, Kuzina V, Erthmann P, Fukushima EO, Augustin JM, Olsen CE, Scholtalbers J, Volpin H, Andersen SB, Hauser TP et al (2015) Identification and genome organization of saponin pathway genes from a wild crucifer, and their use for transient production of saponins in Nicotiana benthamiana. Plant J 84:478–490
CAS
Article
Google Scholar
Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E, Choi J, Cheong K, Kim KT et al (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278
CAS
Article
Google Scholar
Kosma DK, Nemacheck JA, Jenks MA, Williams CE (2010) Changes in properties of wheat leaf cuticle during interactions with Hessian fly. Plant J 63:31–43
CAS
PubMed
Google Scholar
Kuzina V, Ekstrom CT, Andersen SB, Nielsen JK, Olsen CE, Bak S (2009) Indentification of defense compounds in Barbarea vulgaris against Phyllotreta nemorum by an ecometabolomics approach. Plant Physiol 151:1977–1990
CAS
Article
Google Scholar
Lee SB, Suh MC (2015) Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Rep 34:557–572
CAS
Article
Google Scholar
Leiss KA, Maltese F, Choi YH, Verpoorte R, Klinkhamer PGL (2009) Identification of chlorogenic acid as a resistance factor for thrips in chrysanthemum. Plant Physiol 150:1567–1575
CAS
Article
Google Scholar
Liu X, Vrieling K, Klinkhamer PGL (2019) Phytochemical background mediates effects of pyrrolizidine alkaloids on western flower thrips. J Chem Ecol 45:116–127. https://doi.org/10.1007/s10886-018-1009-2
CAS
Article
PubMed
Google Scholar
Macel M, Visschers IGS, Peters JL, Kappers IF, de Vos RCH, van Dam NM. 2019. Metabolomics of thrips resistance in pepper (Capsicum spp.) reveals monomer and dimer acyclic diterpene glycosides as potential chemical defenses. J Chem Ecol 45:490–501
CAS
Article
Google Scholar
Maharijaya A, Vosman B, Verstappen F, Steenhuis-Broers G, Mumm R, Purwito A, Visser RGF, Voorrips RE (2012) Resistance factors in pepper inhibit larval development of thrips (Frankliniella occidentalis). Entomol Exp Appl 145:62–71
Article
Google Scholar
Maharijaya A, Vosman B, Pelgrom K, Wahyuni Y, de Vos RCH, Voorrips RE (2018) Genetic variation in phytochemicals in leaves of pepper (Capsicum) in relation to thrips resistance. Arthropod-Plant Interactions 13:1–9. https://doi.org/10.1007/s11829-018-9628-7
Article
Google Scholar
Mariani C, Wolters-Arts M (2000) Complex Waxes. Plant Cell 12:1795–1798
CAS
Article
Google Scholar
Mitra S, Sarkar N, Barik A (2017) Long-chain alkanes and fatty acids from Ludwigia octovalvis weed leaf surface waxes as short-range attractant and ovipositional stimulant to Altica cyanea (Weber) (Coleoptera: Chrysomelidae). Bull Entomol Res 107:391–400
CAS
Article
Google Scholar
Müller C, Hilker M (2001) Host finding and oviposition behavior in a chrysomelid specialist - The importance of host plant surface waxes. J Chem Ecol 27:985–994
Article
Google Scholar
Naik T, Vanitha SC, Rajvanshi PK, Chandrika M, Kamalraj S, Jayabaskaran C. 2018. Novel microbial sources of tropane alkaloids: first report of production by endophytic fungi isolated from Datura metel L. Curr Microbiol 75: 206–212
CAS
Article
Google Scholar
Parsons EP, Popopvsky S, Lohrey GT, Alkalai-Tuvia S, Perzelan Y, Bosland P, Bebeli PJ, Paran I, Fallik E, Jenks MA. 2013. Fruit cuticle lipid composition and water loss in a diverse collection of pepper (Capsicum). Physiol Plant 149: 160–174
CAS
Article
Google Scholar
Popovsky-Sarid S, Borovsky Y, Faigenboim A, Parsons EP, Lohrey GT, Alkalai-Tuvia S, Fallik E, Jenks MA, Paran I (2017) Genetic and biochemical analysis reveals linked QTLs determining natural variation for fruit post-harvest water loss in pepper (Capsicum). Theor Appl Genet 130:445–459
CAS
Article
Google Scholar
R Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Schmidt R, Durling MB, de Jager V, Menezes RC, Nordkvist E, Svatoš A, Dubey M, Lauterbach L, Dickschat JS, Karlsson M et al (2018) Deciphering the genome and secondary metabolome of the plant pathogen Fusarium culmorum. FEMS Microbiol Ecol 94(6):508–515
Article
Google Scholar
Shepherd T, Griffiths DW (2006) The effects of stress on plant cuticular waxes. New Phytol 171:469–499
CAS
Article
Google Scholar
Shipp JL, Wang K, Binns MR (1998) Economic injury levels for western flower thrips (Thysanoptera: Thripidae) on greenhouse cucumber. J Econ Entomol 93:1732–1740
Article
Google Scholar
Silva LR, Azevedo J, Pereira MJ, Carro L, Velazquez E, Peix A, Andrade PB (2014) Inoculation of the nonlegume Capsicum annuum (L.) with Rhizobium. J Agric Food Chem 62:565–573
CAS
Article
Google Scholar
Silverman D, Liang J (2000) ‘You are what you eat’: Diet modifies cuticular hydrocarbons. Naturwissenschaften 87:412–416
Article
Google Scholar
Spencer JL (1996) Waxes enhance Plutella xylostella oviposition in response to sinigrin and cabbage homogenates. Entomol Exp Appl 81:165–173
Article
Google Scholar
Steenbergen M, Abd-El-Haliem A, Bleeker P, Dicke M, Escobar-Bravo R, Cheng G, Haring MA, Kant MR, Kappers I, Klinkhamer PGL et al (2018) Thrips advisor: Exploiting thrips-induced defences to combat pests on crops. J Exp Bot 69:1837–1848
Article
Google Scholar
Udayagiri S, Mason CE (1997) Epicuticular wax chemicals in zea mays influence oviposition in Ostrinia nubilalis. J Chem Ecol 23:1675–1687
CAS
Article
Google Scholar
Visschers IGS (2020) Self-defense in Pepper – Identifying natural resistance to thrips in Capsicum. PhD thesis, Radboud University, Nijmegen, the Netherlands. ISBN: 978-94-6402-022-9
Visschers IGS, Dam NM, Van Peters JL (2018a) An objective high-throughput screening method for thrips damage quantitation using Ilastik and ImageJ. Entomol Exp Appl 166(6):fiy078
Visschers IGS, van Dam NM, Peters JL (2018b) Quantification of thrips damage using Ilastik and ImageJ Fiji, Bio-protocol 8(8):e2806. https://doi.org/10.21769/BioProtoc.2806
Article
Google Scholar
Visschers IGS, Peters JL, van de Vondervoort JAH, Hoogveld RHM, van Dam NM (2019) Thrips resistance screening is coming of age: Leaf position and ontogeny are important determinants of leaf-based resistance in pepper. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00510
Article
PubMed
PubMed Central
Google Scholar
Visschers IGS, Peters JL, Timmermans LH, Edwards E, Ferrater JB, Balatero CH, Stratongjun M, Bleeker PM, van Herwijnen Z, Glawe GA, Bruin J, van Dam NM, Macel M (2019) Resistance to three thrips species in Capsicum spp. depends on site conditions and geographic regions. J Appl Entomol 143:929–941
Article
Google Scholar
Vrieling K, Derridj S (2003) Pyrrolizidine alkaloids in and on the leaf surface of Senecio jacobaea L. Phytochemistry 64:1223–1228
CAS
Article
Google Scholar
Zhang J, Li Y, Guo J, Du B, He G, Zhang Y, Chen R, Li J (2018) Lipid profiles reveal different responses to brown planthopper infestation for pest susceptible and resistant rice plants. Metabolomics 14: 120. https://doi.org/10.1007/s11306-018-1422-0
CAS
Article
PubMed
Google Scholar
Zhao X, Chen S, Wang S, Shan W, Wang X, Lin Y, Su F, Yang Z, Yu X (2020) Defensive responses of tea plants (Camellia sinensis) against tea green leafhopper attack: a multi-omics study. Front. Plant Sci. 10:1705. https://doi.org/10.3389/fpls.2019.01705
Article
PubMed
PubMed Central
Google Scholar