Skip to main content
Log in

Lipid profiles reveal different responses to brown planthopper infestation for pest susceptible and resistant rice plants

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Brown planthopper (BPH) is the most destructive insect pest for rice, causing major reductions in rice yield and large economic losses. More than 31 BPH-resistance genes have been located, and several of them have been isolated. Nevertheless, the metabolic mechanism related to BPH-resistance genes remain uncharacterized.

Objectives

To elucidate the resistance mechanism of the BPH-resistance gene Bph6 at the metabolic level, a Bph6-transgenic line R6 (BPH-resistant) and the wild-type Nipponbare (BPH-susceptible) were used to investigate their lipid profiles under control and BPH treatments.

Methods

In conjunction with multivariate statistical analysis and quantitative real-time PCR, BPH-induced lipid changes in leaf blade and leaf sheath were investigated by GC–MS-based lipidomics.

Results

Forty-five lipids were identified in leaf sheath extracts. Leaf sheath lipidomics analysis results show that BPH infestation induces significant differences in the lipid profiles of Nipponbare and R6. The levels of hexadecanoic acid, methyl ester, linoleic acid, methyl ester, linolenic acid, methyl ester, glycidyl palmitate, eicosanoic acid, methyl ester, docosanoic acid, methyl ester, beta-monolinolein, campesterol, beta-sitosterol, cycloartenol, phytol and phytyl acetate had undergone enormous changes after BPH feeding. These results illustrate that BPH feeding enhances sterol biosynthetic pathway in Nipponbare plants, and strengthens wax biosynthesis and phytol metabolism in R6 plants. The results of quantitative real-time PCR of 5 relevant genes were consistent with the changes in metabolic level. Forty-five lipids were identified in the leaf blade extracts. BPH infestation induces distinct changes in the lipid profiles of the leaf blade samples of Nipponbare and R6. Although the lipid changes in Nipponbare are more drastic, the changes within the two varieties are similar. Lipid profiles in leaf sheath brought out significant differences than in leaf blade within Nipponbare and R6. We propose that Bph6 mainly affects the levels of lipids in leaf sheath, and mediates resistance by deploying metabolic re-programming during BPH feeding.

Conclusion

The results indicate that wax biosynthesis, sterol biosynthetic pathway and phytol metabolism play vital roles in rice response to BPH infestation. This finding demonstrated that the combination of lipidomics and quantitative real-time PCR is an effective approach to elucidating the interactions between brown planthopper and rice mediated by resistance genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alamgir, K. M., Hojo, Y., Christeller, J. T., Fukumoto, K., Isshiki, R., Shinya, T., et al. (2016). Systematic analysis of rice (Oryza sativa) metabolic responses to herbivory. Plant, Cell & Environment, 39(2), 453–466.

    Article  CAS  Google Scholar 

  • Bianchi, G., Lupotto, E., & Russo, S. (1979). Composition of epicuticular wax of rice, Oryza sativa. Experientia, 35(11), 1417–1417. https://doi.org/10.1007/BF01962755.

    Article  CAS  Google Scholar 

  • Cagampang, G. B., Pathak, M. D., & Juliano, B. O. (1974). Metabolic changes in the rice plant during infestation by the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). Applied Entomology and Zoology, 9(3), 174–184.

    Article  CAS  Google Scholar 

  • Chen, W., Gong, L., Guo, Z., Wang, W., Zhang, H., Liu, X., et al. (2013). A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. Molecular Plant, 6(6), 1769–1780.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, X., Wu, Y., Guo, J., Du, B., Chen, R., Zhu, L., et al. (2013b). A rice lectin receptor-like kinase that is involved in innate immune responses also contributes to seed germination. Plant Journal, 76(4), 687–698. https://doi.org/10.1111/tpj.12328.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, X., Zhu, L., & He, G. (2013a). Towards understanding of molecular interactions between rice and the brown planthopper. Molecular Plant, 6(3), 621–634. https://doi.org/10.1093/mp/sst030.

    Article  CAS  PubMed  Google Scholar 

  • Clouse, S. D. (2011). Brassinosteroids. The Arabidopsis Book, 9, e0151. https://doi.org/10.1199/tab.0151.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong, X., Chen, W., Wang, W., Zhang, H., Liu, X., & Luo, J. (2014). Comprehensive profiling and natural variation of flavonoids in rice. Journal of Chemical Ecology, 56(9), 876–886. https://doi.org/10.1111/jipb.12204.

    Article  CAS  Google Scholar 

  • Du, B., Zhang, W., Liu, B., Hu, J., Wei, Z., Shi, Z., et al. (2009). Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proceedings of the National Academy of Sciences, 106(52), 22163–22168, https://doi.org/10.1073/pnas.0912139106.

    Article  Google Scholar 

  • Fromme, P., Melkozernov, A., Jordan, P., & Krauss, N. (2003). Structure and function of photosystem I: Interaction with its soluble electron carriers and external antenna systems. FEBS Letters, 555(1), 40–44.

    Article  CAS  PubMed  Google Scholar 

  • Fujita, D., Kohli, A., & Horgan, F. G. (2013). Rice resistance to planthoppers and leafhoppers. Critical Reviews in Plant Sciences, 32(3), 162–191. https://doi.org/10.1080/07352689.2012.735986.

    Article  CAS  Google Scholar 

  • Guo, J., Xu, C., Wu, D., Zhao, Y., Qiu, Y., Wang, X., et al. (2018). Bph6 encodes an exocyst-localized protein and confers broad resistance to planthoppers in rice. Nature genetics. https://doi.org/10.1038/s41588-018-0039-6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Halitschke, R., Schittko, U., Pohnert, G., Boland, W., & Baldwin, I. T. (2001). Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. III. fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiology, 125(2), 711–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, X., & Gross R. W. (2004). Shotgun lipidomics: Electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrometry Reviews, 24(3), 367–412. https://doi.org/10.1002/mas.20023.

    Article  CAS  Google Scholar 

  • Hartmann, M. A. (1998). Plants sterols and the membrane environment. Trends in Plant Science, 3(5), 170–175.

    Article  Google Scholar 

  • Hartmann, M. A. (2004). Sterol metabolism and functions in higher plants. In G. Daum (Ed.), Lipid metabolism and membrane biogenesis (pp. 183–211). Berlin: Springer.

    Google Scholar 

  • Hasegawa, M., Mitsuhara, I., Seo, S., Imai, T., Koga, J., Okada, K., et al. (2010). Phytoalexin accumulation in the interaction between rice and the blast fungus. Molecular Plant-Microbe Interactions, 23(8), 1000–1011.

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa, M., Mitsuhara, I., Seo, S., Okada, K., Yamane, H., Iwai, T., et al. (2014). Analysis on blast fungus-responsive characters of a flavonoid phytoalexin sakuranetin; accumulation in infected rice leaves, antifungal activity and detoxification by fungus. Molecules, 19(8), 11404–11418. https://doi.org/10.3390/molecules190811404.

    Article  CAS  PubMed  Google Scholar 

  • Hibino, H. (1996). Biology and epidemiology of rice viruses. Annual Review of Phytopathology, 34(1), 249–274.

    Article  CAS  PubMed  Google Scholar 

  • Hu, J., Xiao, C., & He, Y. (2016). Recent progress on the genetics and molecular breeding of brown planthopper resistance in rice. Rice, 9(1), 30. https://doi.org/10.1186/s12284-016-0099-0.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang, J. E., Ahn, J. W., Kwon, S. J., Kim, J. B., Kim, S. H., Kang, S. Y., et al. (2014). Selection and molecular characterization of a high tocopherol accumulation rice mutant line induced by gamma irradiation. Molecular Biology Reports, 41(11), 7671–7681.

    Article  CAS  PubMed  Google Scholar 

  • Ischebeck, T., Zbierzak, A. M., Kanwischer, M., & Dörmann, P. (2006). A salvage pathway for phytol metabolism in Arabidopsis. The Journal of Biological Chemistry, 281(5), 2470–2477.

    Article  CAS  PubMed  Google Scholar 

  • Ishihara, A., Hashimoto, Y., Tanaka, C., Dubouzet, J. G., Nakao, T., Matsuda, F., et al. (2008). The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production. The Plant Journal, 54(3), 481–495.

    Article  CAS  PubMed  Google Scholar 

  • Islam, M. A., Du, H., Ning, J., Ye, H., & Xiong, L. (2009). Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Molecular Biology, 70(4), 443–456. https://doi.org/10.1007/s11103-009-9483-0.

    Article  CAS  PubMed  Google Scholar 

  • Jena, K. K., & Kim, S.-M. (2010). Current status of brown planthopper (BPH) resistance and genetics. Rice, 3(2–3), 161–171. https://doi.org/10.1007/s12284-010-9050-y.

    Article  Google Scholar 

  • Jing, S., Zhao, Y., Du, B., Chen, R., Zhu, L., & He, G. (2017). Genomics of interaction between the brown planthopper and rice. Current Opinion in Insect Science, 19, 82–87. https://doi.org/10.1016/j.cois.2017.03.005.

    Article  PubMed  Google Scholar 

  • Jo, Y., & Hyun, T. K. (2011). Genome-wide identification of antioxidant component biosynthetic enzymes: Comprehensive analysis of ascorbic acid and tocochromanols biosynthetic genes in rice. Computational Biology and Chemistry, 35(5), 261–268.

    Article  CAS  PubMed  Google Scholar 

  • Kim, C. S., Koh, H. S., & Fukami, H. (1994). Antifeedants of rice planthoppers in some millets. Applied Entomology and Zoology, 29(1), 71–79. https://doi.org/10.1303/aez.29.71.

    Article  Google Scholar 

  • Kim, H. B. (2005). Arabidopsis cyp51 mutant shows postembryonic seedling lethality associated with lack of membrane integrity. Plant Physiology, 138(4), 2033–2047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, T. (2016). Evolving ideas about genetics underlying insect virulence to plant resistance in rice-brown planthopper interactions. Journal of Insect Physiology, 84, 32–39.

    Article  CAS  PubMed  Google Scholar 

  • Kunst, L., & Samuels, A. L. (2003). Biosynthesis and secretion of plant cuticular wax. Progress in Lipid Research, 42, 51–80.

    Article  CAS  PubMed  Google Scholar 

  • Lippold, F., Dorp, V., Abraham, K., Hölzl, M., Wewer, G., Yilmaz, V., J. L., et al (2012). Fatty acid phytyl ester synthesis in chloroplasts of Arabidopsis. The Plant Cell, 24(5), 2001–2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, C., Hao, F., Hu, J., Zhang, W., Wan, L., Zhu, L., et al. (2010). Revealing different systems responses to brown planthopper infestation for pest susceptible and resistant rice plants with the combined metabonomic and gene-expression analysis. Journal of Proteome Research, 9(12), 6774–6785.

    Article  CAS  PubMed  Google Scholar 

  • Liu, S., Deng, L., Fu, Y., Hu, G., Liu, W., & Zhao, X. (2016). Identification and characterization of the yls mutation in rice (Oryza sativa L.) with lower photosynthetic pigment content. Czech Journal of Genetics and Plant Breeding, 52(3), 101–107.

    Article  CAS  Google Scholar 

  • Liu, Y., Wu, H., Chen, H., Liu, Y., He, J., Kang, H., et al. (2015). A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice. Nature Biotechnology, 33(3), 301–305. https://doi.org/10.1038/nbt.3069.

    Article  CAS  PubMed  Google Scholar 

  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆C T method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  • Lou, Y., Hua, X., Turlings, T. C. J., Cheng, J., Chen, X., & Ye, G. (2006). Differences in induced volatile emissions among rice varieties result in differential attraction and parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae in the Field. Journal of Chemical Ecology, 32(11), 2375–2387.

    Article  CAS  PubMed  Google Scholar 

  • Matsuzuka, K., Kimura, E., Nakagawa, K., Murata, K., Kimura, T., & Miyazawa, T. (2013). Investigation of tocotrienol biosynthesis in rice (Oryza sativa L.). Food Chemistry, 140(1–2), 91–98.

    Article  CAS  PubMed  Google Scholar 

  • Miller, B., Madilao, L. L., Ralph, S., & Bohlmann, J. (2005). Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. Plant Physiology, 137(1), 369–382. https://doi.org/10.1104/pp.104.050187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29(11), 1181–1189.

    Article  CAS  PubMed  Google Scholar 

  • Okazaki, Y., & Saito, K. (2016). Integrated metabolomics and phytochemical genomics approaches for studies on rice. GigaScience, 5(1), 11. https://doi.org/10.1186/s13742-016-0116-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papazian, S., Khaling, E., Bonnet, C., Lassueur, S., Reymond, P., Moritz, T., et al. (2016). Central metabolic responses to ozone and herbivory affect photosynthesis and stomatal closure. Plant Physiololy, 172(3), 2057.

  • Pare, P. W., & Tumlinson, J. H. (1999). Plant volatiles as a defense against insect herbivores. Plant Physiology, 121(2), 325–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker, D., Beckmann, M., Zubair, H., Enot, D. P., Caracuel-Rios, Z., Overy, D. P., et al. (2009). Metabolomic analysis reveals a common pattern of metabolic re-programming during invasion of three host plant species by Magnaporthe grisea. The Plant Journal, 59(5), 723–737. https://doi.org/10.1111/j.1365-313X.2009.03912.x.

    Article  CAS  PubMed  Google Scholar 

  • Peng, L., Zhao, Y., Wang, H., Zhang, J., Song, C., Shangguan, X., et al. (2016). Comparative metabolomics of the interaction between rice and the brown planthopper. Metabolomics, 12(8), 132.

    Article  CAS  Google Scholar 

  • Qin, B. X., Tang, D., Huang, J., Li, M., Wu, X.-R., Lu, L.-L., et al. (2011). Rice OsGL1-1 is involved in leaf cuticular wax and cuticle membrane. Molecular Plant, 4(6), 985–995. https://doi.org/10.1093/mp/ssr028.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, Y. F., Cheng, L., Liu, F., & Li, R. B. (2013). Identification of a new locus conferring antixenosis to the brown planthopper in rice cultivar Swarnalata (Oryza sativa L.). Genetics and Molecular Research, 12(3), 3201–3211.

    Article  CAS  PubMed  Google Scholar 

  • Ren, J., Gao, F., Wu, X., Lu, X., Zeng, L., Lv, J., et al. (2016). Bph32, a novel gene encoding an unknown SCR domain-containing protein, confers resistance against the brown planthopper in rice. Scientific Reports, 6, 37645. https://doi.org/10.1038/srep37645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo, H. S., Song, J. T., Cheong, J. J., Lee, Y.-H., Lee, Y.-W., Hwang, I., et al. (2001). Jasmonic acid carboxyl methyltransferase: A key enzyme for jasmonate-regulated plant responses. Proceedings of the National Academy of Sciences, 98(8), 4788–4793, https://doi.org/10.1073/pnas.081557298.

    Article  Google Scholar 

  • Shevchenko, A., & Simons, K. (2010). Lipidomics: Coming to grips with lipid diversity. [Perspective]. Nature Reviews Molecular Cell Biology, 11, 593. https://doi.org/10.1038/nrm2934.

    Article  CAS  PubMed  Google Scholar 

  • Sogawa, K. (1973). Feeding of the rice plant- and leafhoppers. Review of Plant Protection Research, 6,31–43.

    Google Scholar 

  • Sogawa, K. (1982). The rice brown planthopper: Feeding physiology and host plant interactions. Annual Review of Entomology, 27(1), 49–73.

    Article  CAS  Google Scholar 

  • Tamura, Y., Hattori, M., Yoshioka, H., Yoshioka, M., Takahashi, A., Wu, J., et al. (2014). Map-based cloning and characterization of a brown planthopper resistance gene BPH26 from Oryza sativa L. ssp. indica cultivar ADR52. Scientific Reports, 4, 5872. https://doi.org/10.1038/srep05872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyomasu, T., Usui, M., Sugawara, C., Otomo, K., Hirose, Y., Miyao, A., et al. (2014). Reverse-genetic approach to verify physiological roles of rice phytoalexins: Characterization of a knockdown mutant of OsCPS4phytoalexin biosynthetic gene in rice. Physiologia Plantarum, 150(1), 55–62. https://doi.org/10.1111/ppl.12066.

    Article  CAS  PubMed  Google Scholar 

  • Turlings, T. C., & Wäckers, F. (2004). Recruitment of predators and parasitoids by herbivore-injured plants. Advances in Insect Chemical Ecology, 2, 21–75.

    Article  Google Scholar 

  • Uawisetwathana, U., Graham, S. F., Kamolsukyunyong, W., Sukhaket, W., Klanchui, A., Toojinda, T., et al. (2015). Quantitative 1H NMR metabolome profiling of Thai Jasmine rice (Oryza sativa) reveals primary metabolic response during brown planthopper infestation. Metabolomics, 11(6), 1640–1655.

    Article  CAS  Google Scholar 

  • Unsicker, S. B., Kunert, G., & Gershenzon, J. (2009). Protective perfumes: The role of vegetative volatiles in plant defense against herbivores. Current Opinion in Plant Biology, 12(4), 479–485. https://doi.org/10.1016/j.pbi.2009.04.001.

    Article  CAS  PubMed  Google Scholar 

  • vom Dorp, K., Hölzl, G., Plohmann, C., Eisenhut, M., Abraham, M., Weber, A. P. M., et al. (2015). Remobilization of phytol from chlorophyll degradation is essential for tocopherol synthesis and growth of Arabidopsis. The Plant Cell, 27(10), 2846–2859.

    Google Scholar 

  • Vriet, C., Russinova, E., & Reuzeau, C. (2013). From squalene to brassinolide: The steroid metabolic and signaling pathways across the plant kingdom. Molecular Plant, 6(6), 1738–1757.

    Article  CAS  PubMed  Google Scholar 

  • Wang, K., Senthil-Kumar, M., Ryu, C. M., Kang, L., & Mysore, K. S. (2012). Phytosterols play a key role in plant innate immunity against bacterial pathogens by regulating nutrient efflux into the apoplast. Plant Physiology, 158(4), 1789–1802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, P., Li, C., Wang, Y., Huang, R., Sun, C., Xu, Z., et al. (2014). Identification of a geranylgeranyl reductase gene for chlorophyll synthesis in rice. SpringerPlus, 3, 201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Cao, L., Zhang, Y., Cao, C., Liu, F., Huang, F., et al. (2015). Map-based cloning and characterization of BPH29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice. Journal of Experimental Botany, 66(19), 6035–6045. https://doi.org/10.1093/jxb/erv318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Wang, X., Yuan, H., Chen, R., Zhu, L., He, R., et al. (2008). Responses of two contrasting genotypes of rice to brown planthopper. Molecular Plant-Microbe Interactions, 21(1), 122–132.

    Article  CAS  PubMed  Google Scholar 

  • Watson, A. D. (2006). Thematic review series: Systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: A global approach to lipid analysis in biological systems. Journal of Lipid Research, 47(10), 2101–2111.

    Article  CAS  PubMed  Google Scholar 

  • Wenk, M. R. (2010). Lipidomics: New tools and applications. Cell, 143(6), 888–895.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Z., Zhang, X., He, B., Diao, L., Sheng, S., Wang, J., et al. (2007). A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiology, 145(1), 29–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, K., Ou, X., Gao, C., Tang, H., Jia, Y., Deng, R., et al. (2015a). OsWS1 involved in cuticular wax biosynthesis is regulated by osa-miR1848. Plant, Cell & Environment, 38(12), 2662–2673. https://doi.org/10.1111/pce.12576.

    Article  CAS  Google Scholar 

  • Xia, K., Ou, X., Tang, H., Wang, R., Wu, P., Jia, Y., et al. (2015b). Rice microRNA osa-miR1848 targets the obtusifoliol 14α-demethylase gene OsCYP51G3 and mediates the biosynthesis of phytosterols and brassinosteroids during development and in response to stress. The New Phytologist, 208(3), 790–802.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, J. S., Kollner, T. G., Wiggins, G., Grant, J., Degenhardt, J., & Chen, F. (2008). Molecular and genomic basis of volatile-mediated indirect defense against insects in rice. The Plant Journal, 55(3), 491–503. https://doi.org/10.1111/j.1365-313X.2008.03524.x.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y., Huang, J., Wang, Z., Jing, S., Wang, Y., Ouyang, Y., et al. (2016). Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation. Proceedings of the National Academy of Sciences, 113(45), 12850.

    Article  CAS  Google Scholar 

  • Zhou, J., Ma, C., Xu, H., Yuan, K., Lu, X., Zhu, Z., et al. (2009). Metabolic profiling of transgenic rice with cryIAc and sck genes: An evaluation of unintended effects at metabolic level by using GC–FID and GC–MS. Journal of Chromatography B, 877(8), 725–732.

    Article  CAS  Google Scholar 

  • Zhou, Y., Gong, Z., Yang, Z., Yuan, Y., Zhu, J., Wang, M., et al. (2013). Mutation of the light-induced yellow leaf 1 gene, which encodes a geranylgeranyl reductase, affects chlorophyll biosynthesis and light sensitivity in rice. PLoS ONE, 8(9), 1–14.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Program on Research and Development of Transgenic Plants (2016ZX08009-003-001), and the National Key Research and Development Program (2016YFD0100600 and 2016YFD0100900).

Author information

Authors and Affiliations

Authors

Contributions

JRL, RZC and YJZ conceived and designed the study. JJZ, YL, JPG and BD performed the experiments and analyzed experimental data. JJZ wrote the paper. GCH reviewed and edited the manuscript.

Corresponding authors

Correspondence to Yingjun Zhang, Rongzhi Chen or Jiaru Li.

Ethics declarations

Conflict of interest

All authors declared no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2478 KB)

Supplementary material 2 (XLSX 54 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, Y., Guo, J. et al. Lipid profiles reveal different responses to brown planthopper infestation for pest susceptible and resistant rice plants. Metabolomics 14, 120 (2018). https://doi.org/10.1007/s11306-018-1422-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-018-1422-0

Keywords

Navigation