Skip to main content
Log in

Composition of the surface waxes from bell pepper and eggplant

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Surface waxes from the skins of bell pepper (Capsicum annuum) and eggplant (Solanum melongena) were rinsed with tert-butylmethyl ether (TBME). The wax components were separated into two fractions by elution from a small silica gel column with toluene/hexane (2+1) followed by methanol. They were identified by GC/MS and quantitatively determined by GC/FID. For 12 bell pepper cultivars, fraction 1 made up 39% of the total and contained mainly n-alkanes C20−C35 (with C31 dominating), iso-alkanes C25−C35, and some aldehydes. The 61% of fraction 2 consisted of 15 triterpenes, namely α- and β-amyrin, lupeol, glutinol, 3β-friedelanol, friedelin, taraxerol, taraxasterol, δ-amyrin, germanicol, multiflorenol, ω-taraxasterol, isomultiflorenol, isobauerenol and bauerenol, as well as n-alkanoic acids C16−C32, 2-hydroxy-alkanoic acids C20−C26 and traces of n-alkanols and phytosterols (campesterol, stigmasterol and β-sitosterol). For the three eggplant cultivars, 77% of fraction 1 was obtained with (in decreasing order) n-alkanes C23−C36, anteiso-alkanes C29−C36, iso-alkanes C27−C35, and some aldehydes. In the 23% of fraction 2, the n-alkanoic acids C16−C32 predominated compared with the 2-hydroxy-alkanoic acids C22–C26, the n-alkanols C24–C29, triterpenols (α- and β-amyrin, lupeol, germanicol) and sterols (stigmasterol and β-sitosterol).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bianchi G (1995) Plant waxes. In Hamilton RJ (ed) Waxes, chemistry, molecular biology and functions. The Oily Press, Dundee, UK, pp 175–222

  2. Freeman B, Albrigo L, Biggs RH (1979) J Am Hort Sci 104:801–808

    CAS  Google Scholar 

  3. Bauer S, Schulte E, Thier HP (2004) Eur Food Res Technol 219:223–228

    Article  CAS  Google Scholar 

  4. Bauer S, Schulte E, Thier HP (2004) Eur Food Res Technol 219:487–491

    Google Scholar 

  5. Haas K (1974) Untersuchung zum chemischen Aufbau der Cuticula während der Organogenese von Blättern und Früchten sowie zur Cuticulartranspiration. Dissertation, University of Hohenheim, Stuttgart, Germany

  6. Seibl J (1970) Massenspektrometrie. Akademische Verlagsgesellschaft, Frankfurt, Germany, pp 180–181

  7. Harvey DJ, Tiffany JM (1984) Biomed Mass Spectrom 11:353–359

    CAS  Google Scholar 

  8. Brieskorn CH, Kabelitz L (1971) Phytochemistry 10:3195–3204

    Article  CAS  Google Scholar 

  9. Tulloch AP (1985) Lipids 20:652–663

    CAS  Google Scholar 

  10. Dobson G, Christie WW (2002) Eur J Lipid Sci Technol 104:36–43

    Article  Google Scholar 

  11. Capella A, Galli C, Fumagalli R (1968) Lipids 3:431–438

    CAS  Google Scholar 

  12. Nicolaides N, Soukup VG, Ruth EC (1983) Biomed Mass Spectrom 10:441–449

    CAS  Google Scholar 

  13. Tulloch AP (1982) Phytochemistry 21:2251–2255

    Article  CAS  Google Scholar 

  14. Itoh T, Tani H, Fukushima K, Tamura T, Matsumoto T (1982) J Chromatogr 234:65–76

    Article  CAS  Google Scholar 

  15. Esuoso KO, Lutz H, Bayer E, Kutubuddin M (2000) J Agric Food Chem 48:231–234

    Article  CAS  Google Scholar 

  16. Budzikiewicz H, Wilson JM, Djerassi C (1963) J Am Chem Soc 85:3688–3699

    CAS  Google Scholar 

  17. Akihisa T, Inada Y, Gosh P et al. (1988) J Am Oil Chem Soc 65:607–610

    CAS  Google Scholar 

  18. Shiojima K, Arai Y, Masuda K, Takase Y, Ageta T, Ageta H (1992) Chem Pharm Bull 40:1683–1690

    CAS  Google Scholar 

  19. Gülz PG, Scora RW, Müller E, Marner FJ (1987) J Agric Food Chem 35:716–720

    Google Scholar 

  20. Nordby HE, McDonald RE (1994) J Agric Food Chem 42:708–713

    CAS  Google Scholar 

  21. Campos P, Vilegas JHY, Lancas FM (1997) J Radioanal Nucl Chem 224:99–102

    CAS  Google Scholar 

  22. Corsino J, de Carvalho PRF, Kato MJ et al (2000) Phytochemistry 55:741–748

    Article  CAS  PubMed  Google Scholar 

  23. Ogunkoya L (1981) Phytochemistry 20:121–126

    Article  CAS  Google Scholar 

  24. Bauer S (2003) Die Zusammensetzung der Oberflächenwachse von Tomaten, Paprika und Auberginen. Dissertation, University of Münster, Münster, Germany

Download references

Acknowledgements

We thank B. Jansen, L. Fennenkötter, R. Laumann, A. Niermann, J. Weber and L. Krüger (Institute of Pharmaceutical Biology and Phytochemistry, University of Münster) for growing the bell pepper and eggplants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erhard Schulte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, S., Schulte, E. & Thier, HP. Composition of the surface waxes from bell pepper and eggplant. Eur Food Res Technol 220, 5–10 (2005). https://doi.org/10.1007/s00217-004-1046-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-004-1046-7

Keywords

Navigation