Skip to main content
Log in

Novel Microbial Sources of Tropane Alkaloids: First Report of Production by Endophytic Fungi Isolated from Datura metel L.

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Eighteen endophytic fungi were isolated from various tissues of Datura metel and genes encoding for putrescine N-methyltransferase (PMT), tropinone reductase 1 (TR1) and hyoscyamine 6β-hydroxylase (H6H) were used as molecular markers for PCR-based screening approach for tropane alkaloids (TAs) producing endophytic fungi. These fungi were identified taxonomically by sequence analysis of the internal transcribed spacer region (ITS1-5.8S-ITS2) and also based on morphological characteristics of the fungal spore as Colletotrichum boninense, Phomopsis sp., Fusarium solani, Colletotrichum incarnatum, Colletotrichum siamense and Colletotrichum gloeosporioides. The production of TAs hyoscyamine and scopolamine by the fungi has been ascertained using chromatography and spectroscopy methods by comparison with the standards. Among the fungi, the highest yields of hyoscyamine (3.9 mg/L) and scopolamine (4.1 mg/L) were found in C. incarnatum culture. This is the first report of endophytic fungi possess the PMT, TR1 and H6H genes and produces TAs. These endophytic fungi have significant potential to be applied in fermentation technology to meet the demands for TAs economically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Afsharypuor S, Mostajeran A, Mokhtary R (1995) Variation of scopolamine and atropine in different parts of Datura metel during development. Planta Med 61:383–384

    Article  PubMed  Google Scholar 

  2. Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16

    Article  Google Scholar 

  3. Boros B, Farkas A, Jakabova S, Bacskay I, Killar F, Felinger A (2010) LC-MS quantitative determination of atropine and scopolamine in the floral nectar of Datura species. Chromatographia Suppl 71(1):43–49

    Article  Google Scholar 

  4. Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124

    Article  CAS  PubMed  Google Scholar 

  5. Firakova S, Sturdikova M, Muckova M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia 62:251–257

    Article  CAS  Google Scholar 

  6. Gontier E, Sangwan BS (1994) Effects of calcium-alginate and calcium-alginate immobilization on growth and tropane alkaloid levels of a stable suspension cell line of Datura anoxia Mill. Plant Cell Rep 13:533–536

    Article  CAS  PubMed  Google Scholar 

  7. Griffin WJ, Lin GD (2000) Chemotaxonomy and geographical distribution of tropane alkaloids. Phytochemistry 53:623–637

    Article  CAS  PubMed  Google Scholar 

  8. Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Products 69:509–526

    Article  CAS  Google Scholar 

  9. Kim WK, Mauthe W, Hausner G, Klassen GR (1990) Isolation of high molecular weight DNA and double-stranded RNAs from fungi. Can J Bot 68:1898–1902

    Article  CAS  Google Scholar 

  10. Kuriakose GC, Singh S, Rajvanshi PK, Surin WR, Jayabaskaran C (2014) In vitro cytotoxicity and apoptosis induction in human cancer cells by culture extract of an endophytic Fusarium solani strain isolated from Datura metel L. Pharm Anal Acta 5:293

    Google Scholar 

  11. Kusari S, Zuhlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7

    Article  CAS  PubMed  Google Scholar 

  12. Kutchan TM (1996) Heterologous expression of alkaloid biosynthetic genes: a review. Gene 179:73–81

    Article  CAS  PubMed  Google Scholar 

  13. Muthumary J (2013) Indian coelomycetes. MJP Publishers, Chennai, pp 84–94

    Google Scholar 

  14. Nirmal Christhudas IVS, Kumar PP, Agastian P (2012) Antimicrobial activity and HPLC analysis of tropane alkaloids in Streptomyces spp. isolated from Datura stramonium L. Asian J Pharm Clin Res 5(4):278–282

    Google Scholar 

  15. Oksman-Caldentey KM, Hakkinen ST, Rischer H (2007) Metabolic engineering of the alkaloid biosynthesis in plants: functional genomic approaches. In: Verpoorte R, Alfermann AW, Johnson TS (eds) Applications of plant metabolic engineering. Springer, Heidelberg

    Google Scholar 

  16. Onions A, Allosopp MS, Eggins D (1981) Smith’s introduction to industrial mycology, 7th edn. Arnold, London, p. 398

    Google Scholar 

  17. PalazoAn J, Altabella T, CusidoA RM, RiboA M, PinAol MT (1995) Growth and tropane alkaloid production in Agrobacterium transformed roots and derived callus of Datura. Biol Plant 37:161–168

    Article  Google Scholar 

  18. Pinkerton F, Strobel G (1976) Serinol as an activator of toxin production in attenuated cultures of Helminthosporium sacchari. PNAS 73:4007–4011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pramod KK, Singh S, Jayabaskaran C (2010) Expression of hyoscyamine 6β-hydroxylase in the root pericycle cells and accumulation of its product scopolamine in leaf and stem tissues of Datura metel L. Plant Sci 178:202–206

    Article  CAS  Google Scholar 

  20. Richards TA, Soanes DM, Foster PG, Leonard G, Thornton CR, Talbot NJ (2009) Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi. Plant Cell Online 21:1897–1911

    Article  CAS  Google Scholar 

  21. Shankar Naik B, Shashikala J, Krishnamurthy YL (2007) Diversity of fungal endophytes in shrubby medicinal plants of Malnad region, Western Ghats, Southern India. Biologia Bratislava 62(3):251–257

    Google Scholar 

  22. Sharma V, Sharma N, Singh B, Gupta RC (2009) Cytomorphological studies and HPTLC fingerprinting in different plant parts of three wild morphotypes of Datura metel L. “Thorn Apple” from North India. Int J Green Pharm 3:40–46

    Article  Google Scholar 

  23. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    Article  CAS  PubMed  Google Scholar 

  24. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  CAS  PubMed  Google Scholar 

  25. Sutton BC (1980) The Coelomycetes. Fungi imperfecti with pycnidia, acervuli and stromata. Commonwealth Mycological Institute, Kew, p. 696

    Google Scholar 

  26. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  CAS  PubMed  Google Scholar 

  27. Weinberger N (2006) Food for thought: honeybee foraging, memory, and acetylcholine. Signal Transduction Knowl Sci Signal 336:23

    Google Scholar 

  28. Xiong Z, Yang Y, Zhao N, Wang Y (2013) Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew,Taxus x media. BMC Microbiol 13:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zarate R, Jaber-Vazdekis N, Medina B, Ravelo AG (2006) Tailoring tropane alkaloid accumulation in transgenic hairy roots of Atropa baetica by over-expressing the gene encoding hyoscyamine 6b-hydroxylase. Biotechnol Lett 28:1271–1277

    Article  CAS  PubMed  Google Scholar 

  30. Zhang L, Ding R, Chai Y, Bonfill M, Moyano E, Oksman-Caldentey KM, Xu T, Pi Y, Wang Z, Zhang H, Kai G, Liao Z, Sun X, Tang K (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci USA 101:6786–6791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant BT/PR14760/NDB/52/188/2010 to CJB from the Department of Biotechnology (DBT), Government of India, New Delhi, India. VSC and MC thank the Department of Biotechnology and UGC, New Delhi, India for Post-Doctoral fellowship awards. SK thanks DST-SERB New Delhi, India for the young scientist award. We also thank DBT-IISC Partnership Programme, DST-FIST sponsored by GOI New Delhi, India and UGC special Assistance programme for financial support and providing facilities. We also thank emeritus Prof. T. Ramasarma and Prof. R. Manjunath for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chelliah Jayabaskaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Tanushree Naik and Shanadrahalli Chandrashekaraiah Vanitha have contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 530 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, T., Vanitha, S.C., Rajvanshi, P.K. et al. Novel Microbial Sources of Tropane Alkaloids: First Report of Production by Endophytic Fungi Isolated from Datura metel L.. Curr Microbiol 75, 206–212 (2018). https://doi.org/10.1007/s00284-017-1367-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1367-y

Navigation